
Automation1 iXC6e and XC6e High-Powered PWM Digital Drives

FLT PWR

€

HARDWARE MANUAL

Revision 2.02

GLOBAL TECHNICAL SUPPORT

Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2020-2024, Aerotech, Inc., All rights reserved.

Table of Contents

Automation1 iXC6e and XC6e High-Powered PWM Digital Drives	1
Table of Contents	3
List of Figures	5
List of Tables	
EU Declaration of Conformity	
UKCA Declaration of Conformity	
Agency Approvals	
Safety Procedures and Warnings	
Handling and Storage	
Installation Overview	15
Chapter 1: iXC6e/XC6e Overview	. 17
1.1. Feature Summary	
1.2. Ordering Options	
1.3. Functional Block Diagram	
1.4. Electrical Specifications	
1.4.1. System Power Requirements	
1.4.2. Real-Time Clock Requirements (iXC6e Only)	
1.5. Mechanical Specifications	
1.5.1. Mounting and Cooling	
1.5.2. Dimensions	26
1.6. Environmental Specifications	28
1.7. Drive and Software Compatibility	28
Chapter 2: Installation and Configuration	29
2.1. Input Power Connections	
2.1.1. Control Supply Connector	
2.1.2. Motor Supply Connector	
2.1.3. Minimizing Noise for EMC/CE Compliance	
2.1.4. Inrush Current Limiting	
2.2. Motor Power Output Connector	
2.2.1. Brushless Motor Connections	
2.2.1.1. Brushless Motor Powered Motor and Feedback Phasing	
2.2.1.2. Brushless Motor Unpowered Motor and Feedback Phasing	
2.3. Feedback Connector	40
2.3.1. Primary Encoder Inputs	41
2.3.1.1. Square Wave Encoder (Primary)	42
2.3.1.2. Absolute Encoder (Primary)	43
2.3.1.3. Sine Wave Encoder (Primary) [-MX2/-MX3 Option]	
2.3.1.4. Encoder Phasing	
2.3.2. Hall-Effect Inputs	
2.3.3. Thermistor Input	
2.3.4. Encoder Fault Input	
2.3.5. End of Travel and Home Limit Inputs	
2.3.5.1. End of Travel and Home Limit Phasing	
2.3.6. Brake Outputs	
2.4. Safe Torque Off Input (STO)	
2.4.1. STO Standards	
2.4.2. STO Functional Description	57
2.4.3. STO Startup Validation Testing	
2.4.4. STO Diagnostics	
2.5. Auxiliary I/O Connector	
2.5.1. Auxiliary Encoder Interface	
2.5.1.1. Square Wave Encoder (Auxiliary)	
2.5.1.2. Absolute Encoder (Auxiliary)	
2.5.1.3. Sine wave Encoder (Auxiliary) [-MAS Option]	40
2.5.3. Digital Outputs	
2.5.4. Digital Inputs	

2.5.5. High-Speed Inputs	
2.5.6. Analog Output 0	
2.5.7. Analog Input 0 (Differential)	
2.6. Brake Power Supply Connector	
2.7. HyperWire Interface	
2.8. Bus Link Connector	
2.9. Sync Port	
2.10. Industrial Ethernet (iXC6e Only)	
2.11. System Interconnection	
2.12. PC Configuration and Operation Information	
Chapter 3: -EB1 Option Expansion Board	89
3.1. Digital Outputs [-EB1]	
3.2. Digital Inputs [-EB1]	
3.3. Analog Outputs [-EB1]	
3.4. Analog Inputs [-EB1]	
3.5. PSO Interface [-EB1]	
Chapter 4: Cables and Accessories	101
4.1. Joystick Interface	
4.2. Handwheel Interface	
Chapter 5: Maintenance	
5.1. Preventative Maintenance	
5.2. Fuse Specifications	
Appendix A: Warranty and Field Service	
Appendix B: Revision History	
Index	

List of Figures

Figure 1-1:	iXC6e High Power Networked Digital Drive	17		
Figure 1-2:	XC6e High Power Networked Digital Drive			
Figure 1-3:	Functional Diagram			
Figure 1-4:	Dimensions			
Figure 1-5:	Dimensions [-EB1]	27		
Figure 2-1:	Control Supply Connections			
Figure 2-2:	Motor Supply Connections	30		
Figure 2-3:	Inrush Limiting Circuit External to Drive	33		
Figure 2-4:	Brushless Motor Configuration			
Figure 2-5:	Positive Motor Direction			
Figure 2-6:	Encoder and Hall Signal Diagnostics			
Figure 2-7:	Brushless Motor Phasing Oscilloscope Example	39		
Figure 2-8:	Brushless Motor Phasing Goal			
Figure 2-9:	Square Wave Encoder Schematic (Feedback Connector)	42		
Figure 2-10:	Absolute Encoder Schematic (Feedback Connector)	43		
Figure 2-11:	Sine Wave Encoder Phasing Reference Diagram			
Figure 2-12:	Sine Wave Encoder Schematic (Feedback Connector)			
Figure 2-13:	Encoder Phasing Reference Diagram (Standard)	46		
Figure 2-14:	Position Feedback in the Diagnostic Display	46		
Figure 2-15:	Hall-Effect Inputs Schematic (Feedback Connector)	47		
Figure 2-16:	Thermistor Input Schematic (Feedback Connector)	48		
Figure 2-17:	Encoder Fault Input Schematic (Feedback Connector)	49		
Figure 2-18:	End of Travel and Home Limit Input Connections	51		
Figure 2-19:	End of Travel and Home Limit Input Schematic (Feedback Connector)	51		
Figure 2-20:	End of Travel and Home Limit Input Diagnostic Display			
Figure 2-21:	Brake Connected to the 25-Pin Feedback Connector (Typical)	53		
Figure 2-22:	Typical STO Configuration	55		
Figure 2-23:	STO Timing			
Figure 2-24:	Square Wave Encoder Interface (Aux I/O Connector)	62		
Figure 2-25:	Absolute Encoder Schematic (Auxiliary I/O Connector)			
Figure 2-26:	Sine Wave Encoder Phasing Reference Diagram			
Figure 2-27:	Sine Wave Encoder Schematic (Auxiliary I/O Connector)			
Figure 2-28:	PSO Interface	67		
Figure 2-29:	Digital Output Schematic (Aux I/O Connector)	69		
Figure 2-30:	Digital Outputs Connected in Current Sourcing Mode			
Figure 2-31:	Digital Outputs Connected in Current Sinking Mode			
Figure 2-32:	Digital Inputs Schematic (Aux I/O Connector)	71		
Figure 2-33:	Digital Inputs Connected to Current Sourcing Devices			
Figure 2-34:	Digital Inputs Connected to Current Sinking Devices	72		
Figure 2-35:	High-Speed Inputs			
Figure 2-36:	Analog Output 0 Schematic			
Figure 2-37:	Analog Input 0 Schematic			
Figure 2-38:	Bus Link Wiring Schematic			
Figure 2-39:	Drive-Based System Wiring Drawing (Best Practice)	84		
Figure 2-40:	PC-Based System Wiring Drawing (Best Practice)			
Figure 2-41:	Recommended System Connections for a Drive-Based Controller			
Figure 2-42:	Recommended System Connections for a PC-Based Controller			
Figure 3-1:	-EB1 I/O Option Board Connectors (iXC6e shown)			
	·			

Figure 3-2:	Digital Outputs Schematic [-EB1]	
Figure 3-3:	Digital Outputs Connected in Current Sourcing Mode [-EB1]	
Figure 3-4:	Digital Outputs Connected in Current Sinking Mode [-EB1]	
Figure 3-5:	Digital Inputs Schematic [-EB1]	
Figure 3-6:	Digital Inputs Connected to Current Sourcing (PNP) Devices [-EB1]	
Figure 3-7:	Digital Inputs Connected to Current Sinking (NPN) Devices [-EB1]	
Figure 3-8:	Analog Output Typical Connection [-EB1]	
Figure 3-9:	Analog Input Typical Connection [-EB1]	
Figure 3-10:	PSO Output Sources Current	
Figure 3-11:	PSO Output Sinks Current	
Figure 3-12:	PSO TTL Outputs Schematic	
Figure 4-1:	Two Axis Joystick Interface (to the Aux I/O of two drives)	
Figure 4-2:	Two Axis Joystick Interface (to the I/O board)	
Figure 4-3:	Handwheel Interconnection to Aux I/O Connector	104
Figure 4-4:	Handwheel Interconnection to the Aux I/O through a BBA32 Module	104
Figure 5-1:	Fuse Location on the XC6e Control Board	107

List of Tables

Table 1-1:	Example Order and Ordering Options	20		
Table 1-2:	Electrical Specifications (Common)	.22		
Table 1-3:	Electrical Specifications (by Ordering Option)			
Table 1-4:	Mounting Specifications	25		
Table 1-5:	Environmental Specifications	28		
Table 1-6:	Drive and Software Compatibility	28		
Table 2-1:	Control Supply Connector Pinout	.29		
Table 2-2:	Control Supply Mating Connector Ratings	29		
Table 2-3:	Motor Supply Connector Pinout	30		
Table 2-4:	Motor Supply Mating Connector Ratings	.31		
Table 2-5:	Motor Power Output Connector Pinout	36		
Table 2-6:	Motor Power Output Mating Connector Ratings	.36		
Table 2-7:	Wire Colors for Aerotech-Supplied Brushless Motor Cables	37		
Table 2-8:	Hall Signal Diagnostics	.38		
Table 2-9:	Feedback Connector Pinout	.40		
Table 2-10:	Feedback Mating Connector Ratings	.40		
Table 2-11:	Multiplier Options	.41		
Table 2-12:	Primary Encoder Pins on the Feedback Connector	41		
Table 2-13:	Square Wave Encoder Specifications	.42		
Table 2-14:	Absolute Encoder Specifications	.43		
Table 2-15:	Sine Wave Encoder Specifications	.44		
Table 2-16:	Hall-Effect Feedback Pins on the Feedback Connector	47		
Table 2-17:	Thermistor Input Pin on the Feedback Connector	.48		
Table 2-18:	Encoder Fault Input Pin on the Feedback Connector	49		
Table 2-19:	End of Travel and Home Limit Pins on the Feedback Connector	.50		
Table 2-20:	Brake Output Pins on the Feedback Connector	53		
Table 2-21:	Brake Control Specifications	53		
Table 2-22:	STO Connector Pinout	54		
Table 2-23:	STO Mating Connector Ratings	54		
Table 2-24:	STO Electrical Specifications	55		
Table 2-25:	STO Standards	.56		
Table 2-26:	STO Standards Data	56		
Table 2-27:	STO Signal Delay	58		
Table 2-28:	Motor Function Relative to STO Input State	.58		
Table 2-29:	STO Timing	.59		
Table 2-30:	Auxiliary I/O Connector Pinout	.60		
Table 2-31:	Auxiliary I/O Mating Connector Ratings	60		
Table 2-32:	Auxiliary Encoder Pins on the Auxiliary I/O Connector	61		
Table 2-33:	Square Wave Encoder Specifications	.62		
Table 2-34:	Absolute Encoder Specifications	.63		
Table 2-35:	Sine Wave Encoder Specifications	.64		
Table 2-36:	PSO Specifications	66		
Table 2-37:	PSO Pins on the Auxiliary I/O Connector	66		
Table 2-38:	Digital Output Specifications			
Table 2-39:	Digital Output Pins on the Auxiliary I/O Connector			
Table 2-40:	Digital Input Specifications			
Table 2-41:	Digital Input Pins on the Auxiliary I/O Connector			
Table 2-42:	High-Speed Input Specifications	73		

Table 2-43:	High-Speed Input Pins on the Auxiliary I/O Connector	
Table 2-44:	Analog Output Specifications	74
Table 2-45:	Analog Output Pins on the Auxiliary I/O Connector	74
Table 2-46:	Analog Input Specifications	75
Table 2-47:	Analog Input Pins on the Auxiliary I/O Connector	75
Table 2-48:	Brake Power Supply Connector Pinout	76
Table 2-49:	Brake Power Supply Mating Connector Ratings	
Table 2-50:	HyperWire Card Part Number	77
Table 2-51:	HyperWire Cable Part Numbers	77
Table 2-52:	Bus Link Connector Pinout	
Table 2-53:	Bus Link Mating Connector Ratings	
Table 2-54:	Internal Shunt Specifications	
Table 2-55:	Maximum Recommended Shunt Current	
Table 2-56:	Maximum Additional Storage Energy for a Standard iXC6e/XC6e	
Table 2-57:	Sync-Related Functions	
Table 2-58:	Sync Port Cables	
Table 3-1:	Digital Output Specifications [-EB1]	
Table 3-2:	Digital Output 1 Connector Pinout [-EB1]	
Table 3-3:	Digital Output 2 Connector Pinout [-EB1]	
Table 3-4:	Digital Output 1 and 2 Mating Connector Ratings [-EB1]	
Table 3-5:	Digital Input Specifications [-EB1]	
Table 3-6:	Digital Input 1 Connector Pinout [-EB1]	
Table 3-7:	Digital Input 2 Connector Pinout [-EB1]	
Table 3-8:	Digital Input 1 and 2 Mating Connector Ratings [-EB1]	
Table 3-9:	Analog Output Specifications [-EB1]	
Table 3-10:	Analog Output Connector Pinout [-EB1]	
Table 3-11:	Analog Output Mating Connector Ratings [-EB1]	
Table 3-12:	Differential Analog Input Specifications [-EB1]	
Table 3-13:	Analog Input Connector Pinout [-EB1]	
Table 3-14:	Analog Input Mating Connector Ratings [-EB1]	
Table 3-15:	PSO Specifications [-EB1]	
Table 3-16:	PSO Interface Connector Pinout [-EB1]	
Table 3-17:	PSO Interface Mating Connector Ratings [-EB1]	
Table 4-1:	Standard Interconnection Cables	101
Table 5-1:	LED Description	
Table 5-2:	Troubleshooting	
Table 5-3:	Preventative Maintenance	
Table 5-4:	Control Board Fuse Specifications	

EU Declaration of Conformity

Manufacturer	Aerotech, Inc.
Address	101 Zeta Drive
	Pittsburgh, PA 15238-2811
	USA
Product	iXC6e/XC6e
Model/Types	All

CE

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

2014/30/EU 2014/35/EU 2006/42/EC EU 2015/863 Electromagnetic Compatibility (EMC) Low Voltage Directive Machinery Directive Directive, Restricted Substances (RoHS 3)

and has been designed to be in conformity with the applicable requirements of the following standard(s) when installed and used in accordance with the manufacturer's supplied installation instructions.

EN 61800-3:2017 IEC 61800-5-1:2016 IEC 61800-5-2:2016 EN 55011/55032:2015 EMC Requirements for Power Drives Electrical Safety for Power Drive Systems Functional Safety for Power Drive Systems Conducted and Radiated Emissions

Authorized Representative:

/ Norbert Ludwig

Managing Director Aerotech GmbH Gustav-Weißkopf-Str. 18 90768 Fürth Germany

Engineer Verifying Compliance

(llox Ribrerby / Alex Weibel

Aerotech, Inc. 101 Zeta Drive Pittsburgh, PA 15238-2811 USA 6/6/2024

Date

UKCA Declaration of Conformity

Manufacturer	Aerotech, Inc.
Address	101 Zeta Drive
	Pittsburgh, PA 15238-2811
	USA
Product	iXC6e/XC6e
Model/Types	All

To which this declaration relates, meets the essential health and safety requirements and is in conformity with the relevant UK Legislation listed below:

Electrical Equipment (Safety) Regulations 2016 Electromagnetic Compatibility Regulations 2016 Supply of Machinery (Safety) Regulations 2008 Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Using the relevant section of the following UK Designated Standards and other normative documents when installed in accordance with the installation instructions supplied by the manufacturer.

EN 61800-3:2017 IEC 61800-5-1:2016 IEC 61800-5-2:2016 EN 55011/55032:2015

Authorized Representative: EMC Requirements for Power Drives Electrical Safety for Power Drive Systems Functional Safety for Power Drive Systems Conducted and Radiated Emissions

/ Simon Smith

Managing Director Aerotech Ltd The Old Brick Kiln, Ramsdell, Tadley Hampshire RG26 5PR UK

Engineer Verifying Compliance

(llog Rohrenburg / Alex Weibel

Aerotech, Inc. 101 Zeta Drive Pittsburgh, PA 15238-2811 USA 6/6/2024

Date

Agency Approvals

The iXC6e/XC6e drives have been tested by the following NRTL(s) and have been certified to the standards that follow:

Approval:	CUSNRTL	S A
Approving Agency:	TÜV SÜD America Inc.	
Certificate #:	B 068995 0034	
Standards:	IEC 61800-5-1:2007, IEC 61800-5-1:2007/AMD1:2016	tuvsud.com/ ps-cert
Approval:	Safety Components (STO)	
Approving Agency:	TÜV SÜD	5 3
Certificate #:	Z10 068995 0030 Rev. 01	
Standards:	IEC 61508-1:2010 (up to SIL3),	
	IEC 61508-2:2010 (up to SIL3),	SUD
	ISO 13849-1:2023 (up to PL e),	Functional @ Safety
	IEC 62061:2021 (maximum SIL 3)	

Visit https://www.tuev-sued.de/product-testing/certificates to view Aerotech's TÜV SÜD certificates. Type the certificate number listed above in the search bar or type "Aerotech" for a list of all Aerotech certificates.

Approving Agency:	UL
Product Identity:	Industrial Control Equipment
File #:	E529537
Standards:	UL 61800-5-1

Safety Procedures and Warnings

IMPORTANT: This manual tells you how to carefully and correctly use and operate the drive.

- Read all parts of this manual before you install or operate the drive or before you do maintenance to your system.
- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- All specifications and illustrations are for reference only and were complete and accurate as of the release of this manual. To find the newest information about this product, refer to www.aerotech.com.

If you do not understand the information in this manual, contact Aerotech Global Technical Support.

IMPORTANT: This product has been designed for light industrial manufacturing environments. If the product is used in a manner not specified by the manufacturer:

- The protection provided by the equipment could be impaired.
- The life expectancy of the product could be decreased.

Safety notes and symbols are placed throughout this manual to warn you of the potential risks at the moment of the safety note or if you fail to obey the safety note.

The voltage can cause shock, burn, or death.

You are at risk of physical injury. You could damage the drive.

A surface can be hot enough to burn you.

Your actions, the temperature of the system, or the condition of the atmosphere that surround the system could start a fire.

Components are sensitive to electrostatic discharge.

Unsecured cables could cause you to:

- trip and fall
 - drag the product off of its mounting location
- damage the cable connections.

A blue circle symbol is an action or tip that you should obey. Some examples include:

- General tip
- Read the manual/section
- Wear protective safety equipment (eye protection, ear protection, gloves)
- If applicable, do not lift unassisted

DANGER: To decrease the risk of electrical shock, injury, death, and damage to the equipment, obey the precautions that follow.

- 1. Before you do maintenance to the equipment, disconnect the electrical power.
- 2. Restrict access to the drive when it is connected to a power source.

- 3. Do not connect or disconnect electrical components, wires, and cables while this product is connected to a power source.
- 4. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.
- 5. There are lethal voltages on the shunt resistor terminals.
- 6. Supply each operator with the necessary protection from live electrical circuits.
- 7. Make sure that all components are grounded correctly and that they obey the local electrical safety requirements.
- 8. Install the necessary precautions to supply safety and protection to the operator.

DANGER: System travel can cause crush, shear, or pinch injuries. Restrict access to all motor and stage parts while your system is connected to a power source.

DANGER: Hot surfaces. The case temperature could exceed 70 °C.

DANGER: The shunt resistor dissipates a high quantity of power. To prevent the danger of electric shock or fire, you must obey the precautions that follow:

- Correctly size, mount, and protect the external shunt resistor.
- Protect the wiring to the internal shunt resistor terminals.
- Do not touch the shunt resistor terminals. There are lethal voltages on the terminals.
- - Do not touch the surface of the drive or the external shunt resistor. The temperature can exceed 70°C.
 - Restrict access to the shunt resistor while it is connected to a power source.
 - Wait 10 minutes after you disconnect power before you access the BUS LINK connector.
 - Make sure that the voltage between the DC Bus + and DC Bus terminals is less than 50 V before you access it.

WARNING: To prevent damage to the equipment and decrease the risk of electrical shock and injury, obey the precautions that follow.

- 1. Make sure that all system cables are correctly attached and positioned.
- 2. Do not use the cables or the connectors to lift or move this product.
- 3. Use this product only in environments and operating conditions that are approved in this manual.
- 4. Only trained operators should operate this equipment.

Handling and Storage

Unpacking the drive

IMPORTANT: All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

Inspect the shipping container for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

Remove the packing list from the shipping container. Make sure that all the items specified on the packing list are contained within the package.

The documentation for the drive is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference. Additional information about the system is provided on the Serial and Power labels that are placed on the chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- Drawing number
- System part number

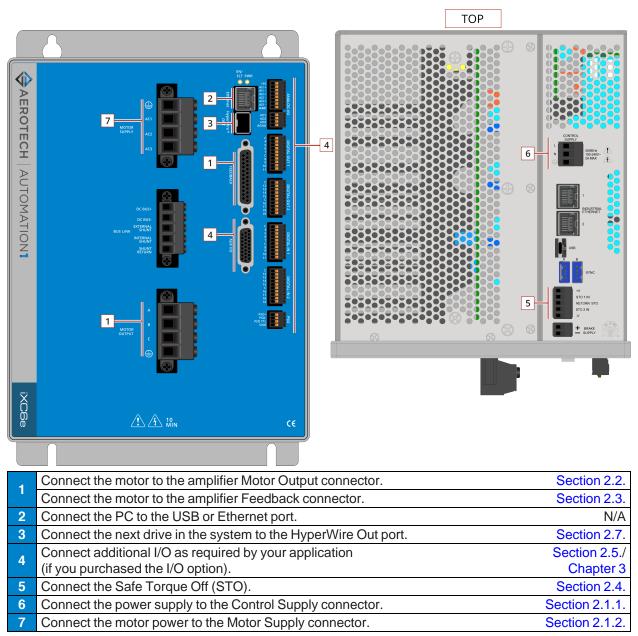
Handling

IMPORTANT: It is the responsibility of the customer to safely and carefully lift and move the drive.

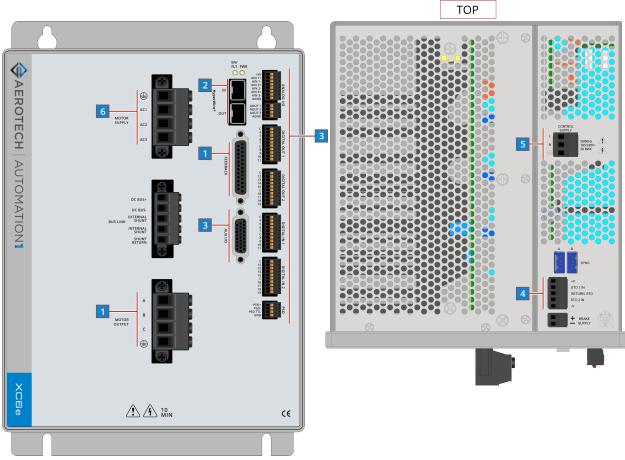
- Be careful when you move or transport the drive.
- Refer to Section 1.5. Mechanical Specifications for dimensions and weight specifications.
- Retain the shipping materials for future use.
- Transport or store the drive in its protective packaging.

WARNING: Electrostatic Discharge (ESD) Sensitive Components!

You could damage the power supply or drives if you fail to observe the correct ESD practices. Wear an ESD wrist strap when you handle, install, or do service to the system assembly.


Storage

Store the drive in the original shipping container. If the original packaging included ESD protective packaging, make sure to store the drive in it. The storage location must be dry, free of dust, free of vibrations, and flat.


Refer to Section 1.6. Environmental Specifications.

Installation Overview

The images that follow show the order in which to make connections and settings that are typical to the iXC6e/XC6e. If a custom interconnect drawing was supplied with your system, that drawing is on your Storage Device and shows as a line item on your Sales Order in the Integration section.

Figure 1: Installation Connection Overview for the iXC6e

Figure 2: Installation Connection Overview for the XC6e

4	Connect the motor to the amplifier Motor Output connector.	Section 2.2.
	Connect the motor to the amplifier Feedback connector.	Section 2.3.
2	Connect a PC or drive-based controller HyperWire port to the HyperWire In port.	Section 2.7.
3	Connect additional I/O as required by your application	Section 2.5./
3	(if you purchased the I/O option).	Chapter 3
4	Connect the Safe Torque Off (STO).	Section 2.4.
5	Connect the power supply to the Control Supply connector.	Section 2.1.1.
6	Connect the motor power to the Motor Supply connector.	Section 2.1.2.

Chapter 1: iXC6e/XC6e Overview

The iXC6e is a high-performance digital drive-based controller. It runs the Automation1-iSMC controller to generate commands for itself as well as for additional drives on the chain.

The XC6e is a high performance digital drive. The XC6e is based on the HyperWire communication protocol and receives commands from a PC or drive-based controller.

Both drives provide deterministic behavior, auto-identification, and are fully software configurable. A double precision floating point DSP controls the digital PID and current loops. Both drives offer standard Safe Torque Off (STO) inputs and optional Position Synchronized Output (PSO) outputs. And both drives are offered with optional encoder interpolation features (-MX2/-MX3), an auxiliary encoder input for dual loop control, dedicated analog and digital I/O (expandable with the -EB1 option), and separate power connections for motor and control supply voltages.

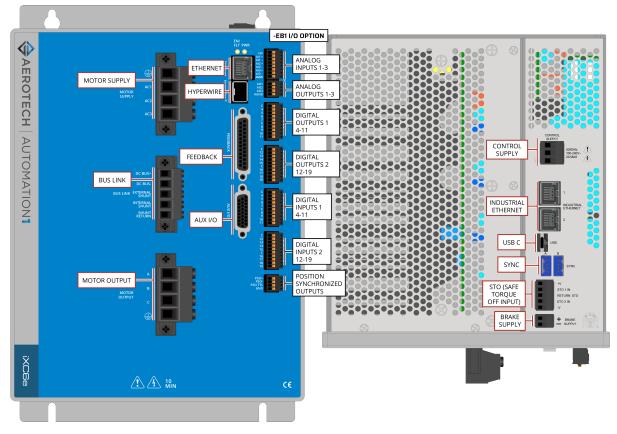


Figure 1-1: iXC6e High Power Networked Digital Drive

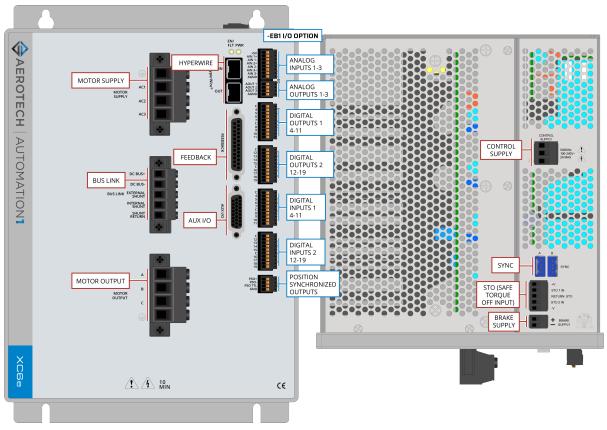


Figure 1-2: XC6e High Power Networked Digital Drive

1.1. Feature Summary

- 100-240 VAC control supply inputs (Section 2.1.1.)
- 20 kHz Servo Loop Update Rate
- Line driver square wave quadrature encoder input for position and velocity feedback (Section 2.3.1.)
- Absolute Encoder support on the Feedback Connector (Section 2.3.1.2.)
- One fail-safe brake output (Section 2.3.6.)
- Two STO sense inputs (Section 2.4.)
- Line driver square wave auxiliary quadrature encoder input or output for PSO (Section 2.5.1.)
- Absolute Encoder support on the Auxiliary I/O Connector (Section 2.5.1.2.)
- Four digital user outputs (Section 2.5.3.)
- Six digital user inputs
 - Four Digital Inputs (Section 2.5.4.)
 - Two High-Speed Inputs (Section 2.5.5.)
- One 16-bit analog output (±10 V) (Section 2.5.6.)
- One 16-bit differential analog input (± 10 V) (Section 2.5.7.)
- Connections to configure an internal shunt resistor (Section 2.8.)
- Position Synchronized Outputs (PSO):
 - Generate outputs synchronized to feedback positioning (Section 2.5.2.)
 - Part-Speed PSO Firing:
 - One to three axes (one axis is the default)
 - Part-Speed PSO commands high-speed, low-latency output pulses based on the commanded vector velocity. Refer to the online help for more information.
 - Multi-Axis PSO Tracking: To track multiple axes...
 - with Aerotech drives, use the Sync Ports (Section 2.9.)
 - with non-Aerotech drives and square wave encoder signals, use the Auxiliary Encoder connector (Section 2.5.)
 - with non-Aerotech drives and sine wave (-MX2 or -MX3 option required) or square wave encoder signals, use the Primary Feedback connector (Section 2.3.)
- One HyperWire communication channel (Section 2.7.)
- One 10/100/1000 BASE-T Ethernet Port (iXC6e Only)
- One USB 2.0 Type C Port (iXC6e Only)
- Two 100 BASE-T Industrial Ethernet Ports (iXC6e Only)

1.2. Ordering Options

Table 1-1:	Example Order and Ordering Options
Example	
Automation1	1-XC6e-50-480V1-EB1-MX2-PSO6
Options	
Automation	11 Drive
-XC6e	Enhanced, High-Powered PWM Servo Drive
-iXC6e	Enhanced, High-Powered PWM Servo Drive with Motion Controller
Peak Curre	nt (Section 1.4.)
-10	10 A Peak, 5 A Continuous Current
-20	20 A Peak, 10 A Continuous Current
-30	30 A Peak, 10 A Continuous Current
-50	50 A Peak, 25 A Continuous Current
-100	100 A Peak, 30/50 A Continuous Current
Rated Moto	or Supply Voltage (Section 2.1.2.)
-240V1	240 VAC Maximum, phase to phase (Peak Current -50 or -100 option)
-480V1	480 VAC Maximum, phase to phase (Peak Current -50 or -100 option)
-480V2	480 VAC Maximum, phase to phase (Peak Current -10, -20, or -30 option)
Expansion	Board (Chapter 3)
-EB0	No expansion board
-EB1	 I/O expansion board Three 16-bit analog outputs (±10 V) Three 16-bit differential analog inputs (±10 V) 16 digital logic inputs (5 - 24 VDC), can be connected to current sourcing or sinking devices 16 digital logic outputs (5 - 24 VDC), user defined as current sourcing or sinking Digital logic laser firing (PSO) output
Multiplier (Section 2.3.1.3.)
-MX0	No encoder multiplier
-MX2	Interpolation circuit allowing for analog sine wave input on the primary encoder channel with an interpolation factor of 65,536.
-MX3	Interpolation circuit allowing for analog sine wave input on the primary encoder channel with an interpolation factor of 65,536 and an auxiliary encoder channel with an interpolation factor of 16,384.
PSO (Section	
-PSO1	One-axis PSO firing (includes One-axis Part-Speed PSO)
-PSO2	Two-axis PSO firing (includes Two-axis Part-Speed PSO)
-PSO3	Three-axis PSO firing (includes Three-axis Part-Speed PSO)
-PSO5	Two-axis Part-Speed PSO firing, which uses the PSO firing circuit based off of the commanded vector velocity of up to 2 axes (includes One-Axis PSO).
-PSO6	Three-axis Part-Speed PSO firing, which uses the PSO firing circuit based off of the commanded vector velocity of 3 or more axes (includes One-Axis PSO).

1.3. Functional Block Diagram

The block diagram that follows shows a summary of the connector signals.

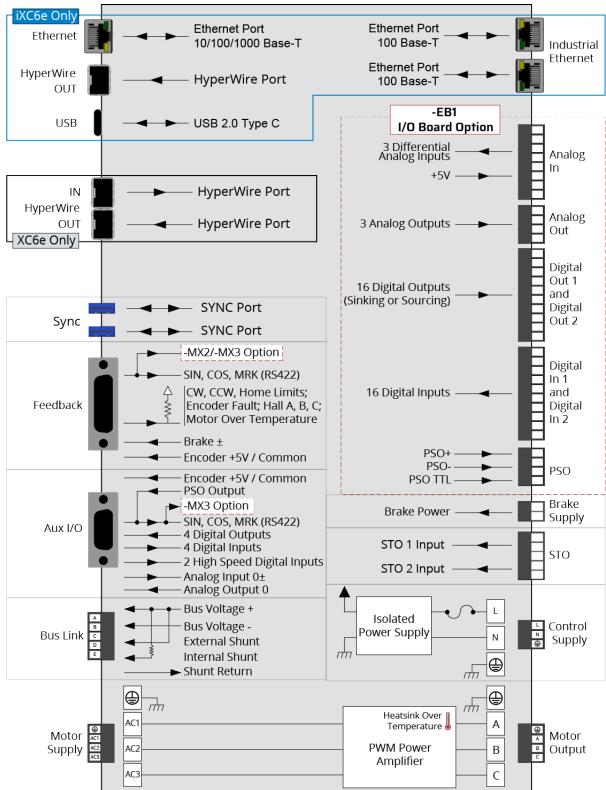


Figure 1-3: Functional Diagram

1.4. Electrical Specifications

 Table 1-2:
 Electrical Specifications (Common)

Description		Specification	
	Input Voltage	100-240 VAC (±10%)	
	Input Frequency	50-60 Hz	
Control Supply	Inrush Current	120 A _{PK} @ 240 V	
	Input Current	0.7 A _{RMS}	
	Internal Fuse	2 A/250 V, 35 A interrupt rating, L terminal only	
SCCR		Suitable for use on a circuit capable of delivering not more than 5,000 rms symmetrical amperes, 240 V (-240V1 option) or 480 V (-480V1/-480V2 option) maximum.	
Power Amplifier Bar	ndwidth	2500 Hz maximum (software selectable)	
PWM Switching Fre	quency	20 kHz or 10 kHz (software selectable)	
Minimum Load Indu	ctance	0.5 mH	
User Power Supply	Output	5 VDC (@ 500 mA)	
Motor Type		Brushless	
Protective Features		 Output short circuit Peak over current DC bus over voltage Motor RMS over current Motor over temperature Heatsink over temperature Control power supply under voltage IGBT supply under voltage Shunt resistor monitoring 	
Insulation		Over Voltage Category 3	
Conductors		Copper Only, 75 °C ⁽¹⁾	
(1) The wire temperature per NFPA 70 NEC (Natio		n 75 °C. The 75 °C reference is for end-use installers when sizing the conductors e applicable.	

Table 1-3: Electrical Specifications (by Ordering Option)							
Input Voltage Option	-24	0V1	-480V2 -480V1			0V1	
Output Current Option	-50	-100	-10	-20	-30	-50	-100
Motor Supply Input Current (at full output power)	20 A	30 A	6 A	10 A	15 A	24 A	30 A
Motor Supply Maximum overload protection breaker	30 A		30 A				
Motor Supply Input Voltage Max ^(1,2)	208-24	10 VAC	480Y/277 VAC ⁽³⁾				
(Vrms phase to phase, +10%)	50/6	50/60 Hz		50/60 Hz			
Output Current (peak) ⁽⁴⁾	50 A	100 A	10 A	20 A	30 A	50 A	100 A
Output Current (continuous) ^(4,5)	17.7 A _{RMS}	35.4 A _{RMS}	3.5 A _{RMS}	7.1 A _{RMS}	10.6 A _{RMS}	17.7 A _{RMS}	21.1 A _{RMS} (6) 35.4 A _{RMS}
Peak Output Voltage	34	340 V 390 V					
MOTOR: Electronic Overcurrent Shutoff	100 A	200 A	100 A	100 A	100 A	200 A	200 A
SHUNT: Electronic Overcurrent Shutoff	50 A	100 A	50 A	50 A	50 A	100 A	100 A
Internal Motor Supply Capacitance	4800 μF 1500 μF						
Capacitor Safe Discharge Time		10 minu	utes (verify	<50 VDC a	t DC bus te	rminals)	
(1) TN configuration only	•						

Table 1-3: Electrical Specifications (by Ordering Option)

(1) TN configuration only.

(2) The iXC6e/XC6e requires three phase motor supply power.

(3) The XC6-480V1 or -480V2 drive must be connected only to a grounded wye-source where the maximum voltage does not exceed 277 VAC to ground.

(4) There are three motor output phases from the drive.

(5) These values are under full output power. Under a lighter load, the continuous output current capability will be higher.

(6) Specification for 20 kHz PWM switching frequency.

(7) Specification for 10 kHz PWM switching frequency.

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.

WARNING: **Electric Shock or Fire Hazard!** A fault current interruption could be the result of an open branch-circuit protective device. To reduce the risk of fire or electric shock, examine the current-carrying parts and other controller components. Replace all damaged parts. If a burnout of the current element of an overload relay occurs, you must replace the complete overload relay.

AVERTISSEMENT : Risque d'électrocution ou d'incendie ! Une interruption du courant de défaut peut être provoqué par un dispositif de protection de circuit de dérivation ouvert. Pour réduire le risque d'incendie ou d'électrocution, examinez les pièces conductrices de courant et les autres composants du contrôleur. Remplacer toutes les parties endommagées. Si un grillage de l'élément de courant d'un relais de surcharge se produit, vous devez remplacer le relais de surcharge dans son ensemble.

1.4.1. System Power Requirements

The following equations can be used to determine total system power requirements. The actual power required from the mains supply will be the combination of actual motor power (work), motor resistance losses, and efficiency losses in the power electronics or power transformer. For 3-phase brushless motors:

Use an EfficiencyFactor of approximately 90% in the following equations.

PWM Amplifier Types

```
Power Output [W] = Torque [N \cdot m] \cdot Angular Velocity [rad/sec]; Rotary

= Force [N] \cdot Linear Velocity [m/sec]; Linear

= B_{emf} [V_{rms} l-n] \cdot MotorCurrent [A_{rms}] \cdot 3; Rotary or Linear

Power Loss [W] = MotorCurrent<sup>2</sup> [A_{rms}^2] \cdot MotorHotResistance [\Omega l-1] \cdot 3/2

Power Input [W] = (Power Output [W] + Power Loss [W]) / EfficiencyFactor
```

NOTES

l-n = line to neutral l-l = line to line Vrms = Volt rms Arms = Ampere rms Apk = Ampere peak Vdc = Volt DC

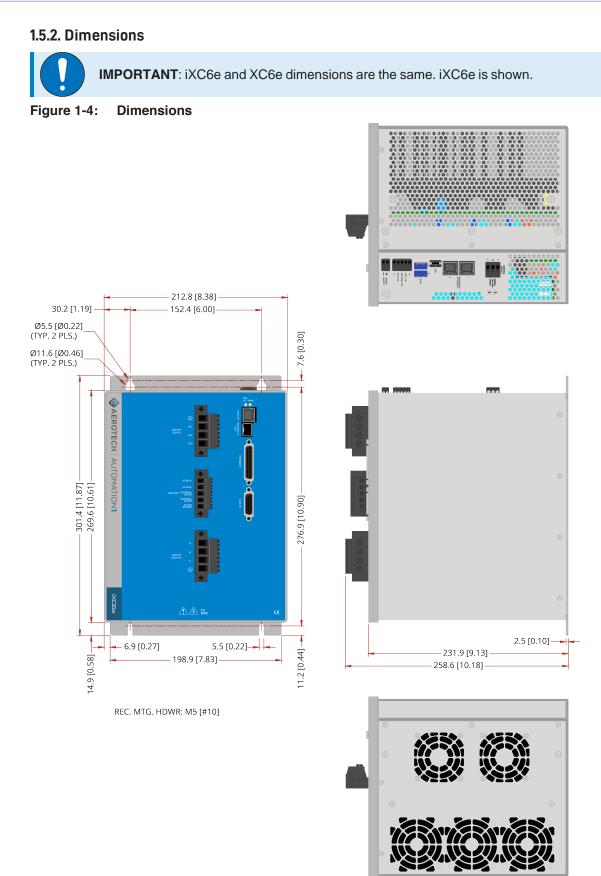
1.4.2. Real-Time Clock Requirements (iXC6e Only)

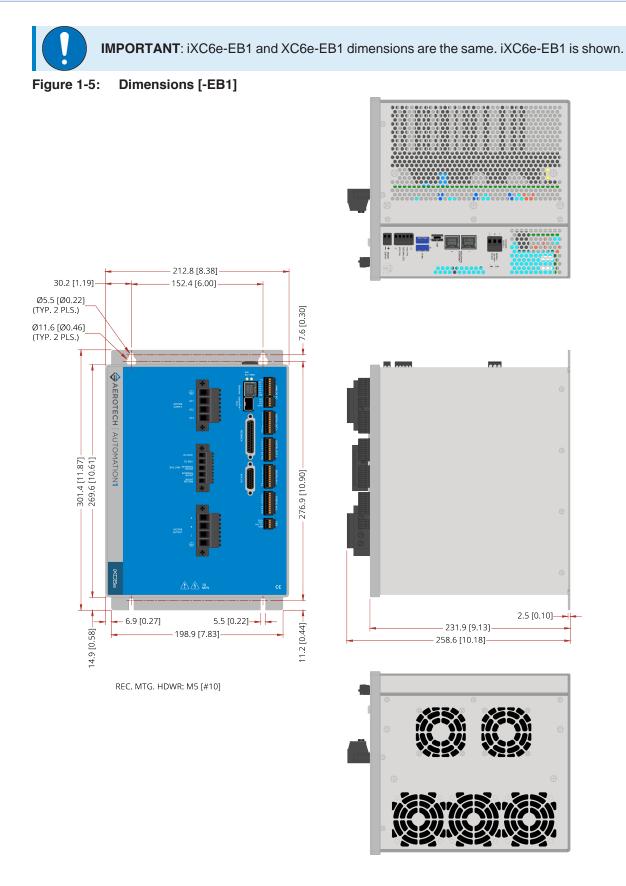
The drive has an internal real-time clock that is used to time-stamp logged data. The clock is powered by an internal capacitor when the control supply is not connected to the drive. When the capacitor is fully charged, it will power the clock for 17.5 days.

If the capacitor is fully discharged, the time on the drive is not reliable. To reinitialize the real-time clock, you must:

- Connect the drive to the control supply. It will take 36 minutes to fully charge the capacitor.
- Connect the drive to the Automation1 Studio and reprogram the real-time clock.

The capacitor charges exponentially with a 7.2 minute time constant. Apply the control supply to charge the capacitor. To achieve the maximum 17.5 days of real-time clock operation in the absence of the control supply, the capacitor must be charged for 36 minutes. If the capacitor is not fully charged when the control supply is lost, the real-time clock will not last the entire 17.5 days on backup capacitor power.


1.5. Mechanical Specifications


1.5.1. Mounting and Cooling

The drive must be installed in an enclosed control cabinet suitable for installation of power equipment. A minimum enclosure rating of IP54 is required to comply with safety standards. Make sure that there is sufficient clearance surrounding the drive for free airflow and for the routing of cables and connections. Consideration for items such as line reactors, line filters, and motor chokes or inductance should be made during the initial cabinet design phase.

Table 1-4: Mounting Specifications

		iXC6e/XC6e	
Customer-Supplied Enclosure		IP54 Compliant	
Weight		7 kg	
Mounting Hardware		M5 [#10] screws (four locations, not included)	
Mounting Orientation		Vertical (typical)	
Dimensions		Refer to Section 1.5.2. Dimensions	
Minimum Clearance	Airflow	~25 mm	
	Connectors	~100 mm	
Operating Temperature		Refer to Section 1.6. Environmental Specifications	
Drive IP Rating		IP20	
Mounting Panel Thickness (Recommended)		2.5 - 3.5 mm (.10125 in)	
UL Enclosure Type Rating of Drive		Open Type	

1.6. Environmental Specifications

The environmental specifications are listed below.

	•
	Operating: 0 °C to 40 °C (32 °F to 104 °F)
Temperature	Maximum Surrounding Air: 40 °C (104 °F)
	Storage: -30 °C to 85 °C (-22 °C to 185 °F)
Humidity	The maximum relative humidity is 80% for temperatures that are less
Non-condensing than 31 °C and decreases linearly to 50% relative humidity at 40 °	
Operating Altitude	0 m to 2,000 m (0 ft to 6,562 ft) above sea level.
Dollution	Pollution Degree 2
Pollution	Typically only nonconductive pollution occurs.
Operation	Use only indoors

Table 1-5: Environmental Specifications

1.7. Drive and Software Compatibility

This table shows the available drives and which version of the software first supported each drive. In the **Last Software Version** column, drives that show a specific version number are not supported after that version.

Table 1-6: Drive and Software Compatibility

Drive Type	First Software Version	Last Software Version
iXC6e	2.1.0	Current
XC6e	2.0.0	Current

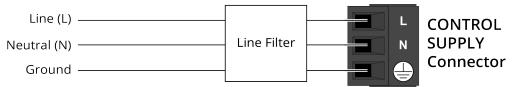
Chapter 2: Installation and Configuration

The sections in this chapter include details on how to set up the electrical and safety components of your system. Obey all safety warnings, including those in Safety Procedures and Warnings.

2.1. Input Power Connections

The drive has two AC input power connectors. One connector is for control power and the other connector is for motor power. For a full list of electrical specifications, refer to Section 1.4.

2.1.1. Control Supply Connector


DANGER: Shock and Fire Hazard

Electrical wiring must be designed and installed in accordance with local electrical safety regulations to prevent the risk of fire and electrical shock.

The Control Supply input supplies power to the communications and logic circuitry of the drive. The L input is connected to an internal fuse. Refer to Table 5-4 for the internal fuse value and part number. The N input is not connected to an internal fuse. An external fuse will be required if N is not connected to Neutral.

The Control Supply contains an internal filter but you could be required to add an external filter for CE compliance. Install the external filter module as close as possible to the drive. Use a Schaffner FN2010-6-06, Corcom 10VW1, or similar filter.

Figure 2-1: Control Supply Connections

Table 2-1: Control Supply Connector Pinout

Pin	Description
L	Line (L): 100-240 VAC Control Power Input
N	Neutral (N) or 100-240 VAC Control Power Input with external fuse
	Protective Ground

Table 2-2: Control Supply Mating Connector Ratings

Specification		Description	
Туре		3-Pin Terminal Block	
Part Numbers		Aerotech: ECK02388	
		Phoenix: 1756272	
Conductor Cross Section	One conductor, stranded with ferrule and plastic sleeve	1422 AWG (0.252.5 mm ²)	
	Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve	1620 AWG (0.51.5 mm ²)	
Tightening Torque		0.50.6 N⋅m	
Conductor Insulation Strip Length		7 mm (0.25 in)	
(1) Refer to the manufacturer website for additional information.			

2.1.2. Motor Supply Connector

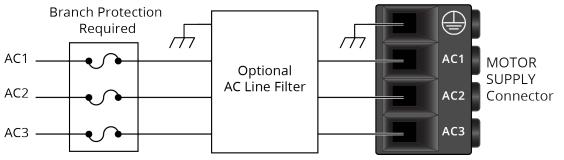
DANGER: Shock and Fire Hazard!

Electrical wiring must be designed and installed in accordance with local electrical safety regulations to prevent the risk of fire and electrical shock.

Motor power is applied to the **AC1**, **AC2**, and **AC3** terminals of the Motor Supply connector. Three phase power is required and must be in a center grounded TT/TN configuration. For CE compliance, connect an AC line filter as close as possible to the drive (refer to Section 2.1.3.).

The system designer must provide branch protection (fuses or circuit breakers) for the drive. D-type breakers are required for proper branch protection (refer to Section 1.4.).

A line reactor can be used to reduce inrush currents, reduce conducted harmonics, improve power factor and protect the drive against voltage surges. Refer to Section 2.1.4. for more information on reducing inrush currents.



CAUTION: The drive can cause a DC current in the protective earthing conductor. Where a residual current-operated protective (RCD) or monitoring (RCM) device is used for protection in case of direct or indirect contact, only an RCD or RCM of Type B is allowed on the supply side of the drive.

WARNING: Verify that all ground connections are installed correctly before you apply power to the iXC6e/XC6e.

Figure 2-2: Motor Supply Connections

Table 2-3: Motor Supply Connector Pinout

Pin	Function
AC1	AC Motor Power Input
AC2	AC Motor Power Input
AC3	AC Motor Power Input
	Protective Earthing Conductor: 2.5 mm ² (14 AWG) minimum conductor size

Use these parameters to configure motor overload protection: AverageCurrentThreshold, AverageCurrentTime, and MaxCurrentClamp.

Table 2-4: Motor Supply Mating Connector Ratings

Specification		Description	
Туре		4-Pin Terminal Block	
Part Numbers		Aerotech: ECK02495	
		Phoenix: 1710352	
Conductor Cross Section	One conductor, stranded with ferrule and plastic sleeve	814 AWG (2.510 mm ²)	
	Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve	1014 AWG (2.56 mm ²)	
Tightening Torque		1.71.8 N·m	
Conductor Insulation Strip Length		12 mm (0.5 in)	
(1) Refer to the manufac	cturer website for additional information.		

2.1.3. Minimizing Noise for EMC/CE Compliance

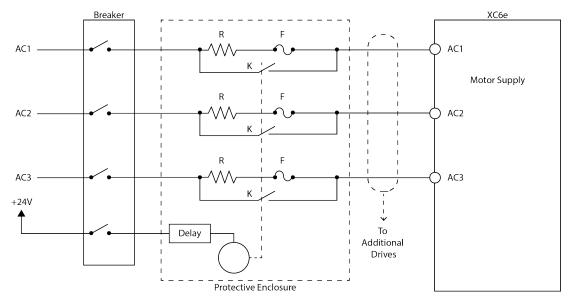
IMPORTANT: The iXC6e/XC6e is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

To reduce electrical noise, observe the following motor feedback and input power wiring techniques.

- 1. Use shielded cable for motor and feedback connectors. Connect the shield to the backshell at each end of the cable.
- 2. Separate motor and power wiring from encoder and I/O wiring.
- 3. Mount drives, power supplies, and filter components on a conductive panel. Mount line filters close to the drive to keep the wire length between the drive and filter to a minimum. Use an AC line filter on the Control Supply such as Schaffner FN2010-6-06 or Corcom 10VW1 or similar. Use an AC line filter on the Motor Supply such as a Schaffner FN258-55-34.
- 4. Use a separate wire for each ground connection to the drive. Use the shortest possible wire length.

The following additional changes could be required for EMC compliance and are recommended during initial EMC system evaluation.

- 1. Add a clamp-on ferrite to the feedback cable close to the drive. [Aerotech PN ECZ02348, Fair-rite PN 0446167281]
- 2. Add a clamp-on ferrite to the Control Supply wires, including the ground wire, close to the drive. [Aerotech PN ECZ02347, Fair-rite PN 0446164281]


For typical system interconnections, refer to Section 2.11. System Interconnection.

2.1.4. Inrush Current Limiting

A large current can occur on the motor supply lines when power is first applied to the drive. This current is due to charging of the internal motor supply capacitance and can cause the circuit breakers to open unexpectedly.

Inrush limiting devices, such as Negative Temperature Coefficient (NTC) devices, can be installed externally to the drive to reduce this current. NTC devices can be inserted into each motor AC supply line. Ideally these devices are bypassed using a contactor shortly after power has been applied and the capacitors are fully charged. This helps to keep the NTC device cool so that it is effective on future power up events and also provides maximum stiffness of the motor supply voltage. Alternately, high surge power resistors can be used to further reduce the inrush current levels.

The figure that follows shows a typical configuration of an inrush limiting circuit implemented external to the drive.

Inrush Limiting Device (R)

The inrush current is given by the equation that follows, assuming that 3 limiters are used, one per phase.

 $I_{in} = V_{in} \cdot (\sqrt{2}/\sqrt{3}) / R$

Where: I_{in} = peak inrush current A V_{in} = line-line input voltage (RMS) R = resistance of the limiting device in Ohms

If only two limiters are used, the inrush current increases by a factor of 3x in the worst case. See the examples that follow for calculating the inrush current while using different limiting devices.

Example 1

Ametherm: MM35 1R550-DIN (1.5 Ohm, 1200J, 50A - NTC device) with 208VAC Motor Supply input voltage

Based on the energy rating on this device, it can support up to twelve 240 V XC6e drives and up to nine 480 V XC6e drives.

Example 2

Vishay: RBEF02208R000KFBVT (8 Ohm 220W resistor) with 480VAC Motor Supply input voltage

The RBEF type resistor is a high surge resistor type that can be used to further reduce inrush currents. Installing the resistors in a separate protective enclosure is recommended to reduce the risk of fire and electric shock. You should also consider adding fuses in series with the resistor and monitoring the bypass relay contactor for failure.

$$I_{pk} = 480 \cdot 0.816 / 8$$

= 49 A

Contactor K/M

A bypass contactor is required when using resistors, and it is recommended when using NTC limiters. The required time delay can be calculated using the formula that follows with a T_c (time constant) factor between 5 and 10.

$$T_d = T_C \cdot R_{eq} \cdot C_{eq} \cdot N$$

Where: T_d = Time delay required in seconds T_c = Time constant factor (5-10) R_{eq} = Inrush limiter resistance C_{eq} = Internal capacitance of each drive (refer to Table 1-3) N = Number of drives

See the examples that follow that show how to correctly calculate the T_d (time delay). Calculate the contactor delay time for four 480 V XC6e drives using three 8 Ω inrush limiters.

$$\begin{split} T_{d\,(min)} &= 5 \cdot 8 \cdot 1500 \cdot 10^{-6} \cdot 4 & ; \ T_{c} &= 5 \\ &= 0.24 \ s \\ T_{d\,(max)} &= 10 \cdot 8 \cdot 1500 \cdot 10^{-6} \cdot 4 & ; \ T_{c} &= 10 \\ &= 0.48 \ s \end{split}$$

Calculate the contactor delay time required for six 240 V XC6e drives using three 1.5 Ω inrush limiters.

 $T_{d(min)} = 5 \cdot 15 \cdot 4800 \cdot 10^{-6} \cdot 6 \qquad ; T_{c} = 5$ = 0.22 s $T_{d(max)} = 10 \cdot 15 \cdot 4800 \cdot 10^{-6} \cdot 6 \qquad ; T_{c} = 10$ = 0.44 s The list that follows includes suggestions for inrush limiter bypass contactors. You can also use devices that are not on the list, but they must be rated for the system voltage / current and must be in accordance with local electrical safety requirements.

Manufacturer P/N	Description
CA7-40-E-M40-24E	4 Pole, 37A, 24VDC coil
CA7-60D-00-24DD	3 Pole, 60A, 24VDC coil
CA7-72D-00-24DD	3 Pole, 60A, 24VDC coil
CA7-85D-00-24DD	3 Pole, 60A, 24VDC coil
CA7-97D-00-24DD	3 Pole, 60A, 24VDC coil

The list that follows includes time delay accessories for the CA7 series contactors. The contactor may also be controlled by software or other logic that monitors the motor supply levels and provides the desired delay.

Manufacturer P/N	Description
CRE7-3-24/48VDC	0.1 to 3 second adjustable turn on delay
CRE7-30-24/48VDC	1 to 30 second adjustable turn on delay

2.2. Motor Power Output Connector

The drive can be used to control brushless motors (refer to Section 2.2.1.).

For a complete list of electrical specifications, refer to Section 1.4.

DANGER: Shock and Fire Hazard

Electrical wiring must be designed and installed in accordance with local electrical safety regulations to prevent the risk of fire and electrical shock.

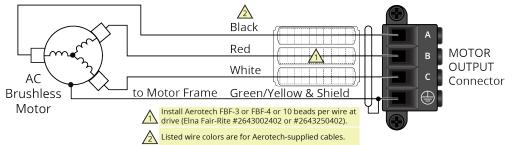
The 4-pin terminal block style motor output connector is located on the front panel.

Table 2-5: Motor Power Output Connector Pinout

Pin	Description	Connector
А	Motor Phase A Output	
В	Motor Phase B Output	A B
С	Motor Phase C Output	c
	Motor Ground	

Table 2-6: Motor Power Output Mating Connector Ratings

Specification		Description
Туре		4-Pin Terminal Block
Part Numbers		Aerotech: ECK02495
		Phoenix: 1710352
Conductor Cross Section	One conductor, stranded with ferrule and plastic sleeve	814 AWG (2.510 mm ²)
	Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve	1014 AWG (2.56 mm ²)
Tightening Torque		1.71.8 N⋅m
Conductor Insulation Strip Length		12 mm (0.5 in)
(1) Refer to the manufacturer website for additional information.		


2.2.1. Brushless Motor Connections

The configuration in Figure 2-4 shows a typical brushless motor connection.

For optimum performance:

- Aerotech recommends that you use shield cables designed for VFD applications.
- Series inductance could be required when you use long cables (> 20 m) to prevent high voltage ringing.
 - \circ $\,$ This should be added to each motor phase close to the drive.
 - Application dependent.
- The cable voltage and current rating must be sized according to the application requirements and local electrical safety regulations.
- The drive parameters AverageCurrentThreshold and AverageCurrentTime must be set to protect the motor from overheating.

Figure 2-4: Brushless Motor Configuration

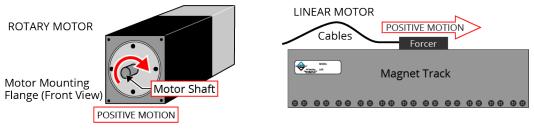
Table 2-7: Wire Colors for Aerotech-Supplied Brushless Motor Cables

Pin	Wire Color Set 1 ⁽¹⁾	Wire Color Set 2 Wire Color Set 3 Wire		Wire Color Set 4
Green/Yellow & Green/Yellow &		Green/Yellow &	Green/Yellow &	
	Shield ⁽²⁾	Shield Shield		Shield
А	Black	Blue & Yellow	Black #1	Black & Brown
В	Red	Red & Orange	Black #2	Red & Orange
С	White White & Brown Black #3 Violet & Blue			
(1) Wire (Color Set #1 is the wire set typic	ally used by Aerotech.		
(2) "8" indianted two wires (Dod & Orange), " ("indianted a single wire (Orang M/hite)				

(2) "&" indicates two wires (Red & Orange); " / " indicates a single wire (Green/White).

Brushless motors are commutated electronically by the controller. The use of Hall effect devices for commutation is recommended.

The controller requires that the Back-EMF of each motor phase be aligned with the corresponding Halleffect signal. To ensure proper alignment, motor, Hall, and encoder connections should be verified using one of the following methods: *powered*, through the use of a test program; or *unpowered* using an oscilloscope. Both methods will identify the A, B, and C Hall/motor lead sets and indicate the correct connections to the controller. Refer to Section 2.2.1.1. for powered motor phasing or Section 2.2.1.2. for unpowered motor and feedback phasing.


For Aerotech-supplied systems, the motor, encoder and Hall sensors are correctly configured and connection adjustments are not necessary.

2.2.1.1. Brushless Motor Powered Motor and Feedback Phasing

Observe the state of the encoder and Hall-effect device signals in the Diagnostics section of the Status Utility.

Table 2-8: Hall Signal Diagnostics		
Hall-Signal Status	Definition	
	0 V or logic low	
ON	5 V or logic high	

Figure 2-5: Positive Motor Direction

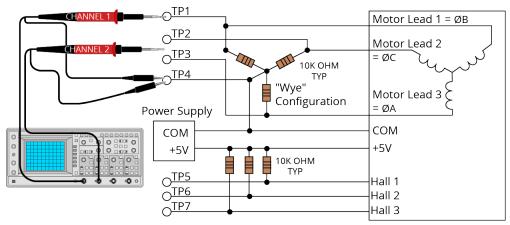
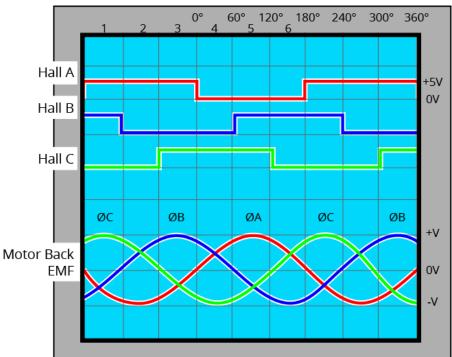


Figure 2-6: Encoder and Hall Signal Diagnostics

Axes	🕄 Data highlighted in blue h	as not been updated.			
Axis Status	Item	х	Y	Z	U
Diagnostics	Status				
Drive Info	Position Feedback	0000000000000	0000000000000	0000000000000	000000000
Drive Status	Position Calibration All	0000000000000	000000000000000000000000000000000000000	0000000000000	000000000
Fault	Position Camming/Gearing	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000	000000000
Primary Feedback Status	Primary Feedback	00000000000000	00000000000000	0000000000000	000000000
Tasks	Auxiliary Feedback	00000000000000	000000000000000000000000000000000000000	0000000000000	000000000
Task Mode	Gantry Marker Difference	0.0000	0.0000	0.0000	0.0
Task Status 0	Analog Input 0	0.0000	0.0000	0.0000	0.0
Task Status 1	Analog Input 1	0.0000	0.0000	0.0000	0.0
Task Status 2	Analog Input 2	0.0000	0.0000	0.0000	0.0
Tasks	Analog Input 3	0.0000	0.0000	0.0000	0.0
ita Collection	Digital Input 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
ive Nodes	Digital Input 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
hernet	Digital Output 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
perWire	Digital Output 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
	Average Velocity Feedback	0000000000000	0000000000000	0000000000000	000000000
	Current Feedback	0.0000	0.0000	0.0000	0.0
	Transition Offset Errors	0	0	0	
	Hardware				
	Enable				
	CW				
	CCW				
	Home				
	Marker				
	Hall A				
	Hall B				
	Hall C				
	ESTOP				

2.2.1.2. Brushless Motor Unpowered Motor and Feedback Phasing


Disconnect the motor from the controller and connect the motor in the test configuration shown in Figure 2-7. This method will require a two-channel oscilloscope, a 5V power supply, and six resistors (10,000 ohm, 1/4 watt). All measurements should be made with the probe common of each channel of the oscilloscope connected to a neutral reference test point (TP4, shown in Figure 2-7). Wave forms are shown while moving the motor in the positive direction.

With the designations of the motor and Hall leads of a third party motor determined, the motor can now be connected to an Aerotech system. Connect motor lead A to motor connector A, motor lead B to motor connector B, and motor lead C to motor connector C. Hall leads should also be connected to their respective feedback connector pins (Hall A lead to the Hall A feedback pin, Hall B to Hall B, and Hall C to Hall C). The motor is correctly phased when the Hall states align with the Back EMF as shown in Figure 2-8. Use the CommutationOffset parameter to correct for Hall signal misalignment.

Figure 2-8: Brushless Motor Phasing Goal

2.3. Feedback Connector

The connector pin assignment is shown in Table 2-9 with detailed connection information in the following sections.

Pin #	Description	In/Out/Bi	Connector
1	Reserved	N/A	
2	Motor Over Temperature Thermistor	Input	
3	+5V Power ⁽¹⁾	Output	
4	Plug and Play Serial Data (for Aerotech stages only)	Bidirectional	
5	Hall-Effect Sensor B (brushless motors only)	Input	
6	Encoder Marker Reference Pulse -	Input	
0	Absolute Encoder Clock -	Output	
7	Encoder Marker Reference Pulse +	Input	1 14
/	Absolute Encoder Clock +	Output	
8	Absolute Encoder Data -	Bidirectional	•
9	Reserved	N/A	•
10	Hall-Effect Sensor A (brushless motors only)	Input	•
11	Hall-Effect Sensor C (brushless motors only)	Input	
12	Clockwise End of Travel Limit	Input	•
13	Brake Output -	Output	•
14	Encoder Cosine +	Input	•
15	Encoder Cosine -	Input	• •
16	+5V Power ⁽¹⁾	Output	•
17	Encoder Sine +	Input	•
18	Encoder Sine -	Input	13 25
19	Absolute Encoder Data+	Bidirectional	
20	Signal Common	Output	
21	Signal Common	Output	
22	Home Switch Input	Input	
23	Encoder Fault Input	Input	
24	Counterclockwise End of Travel Limit	Input	
25	Brake Output +	Output	

Table 2-9: Feedback Connector Pinout

(1) The maximum combined current output is 500 mA.

Table 2-10: Feedback Mating Connector Ratings

Specification	25-Pin Solder Cup	Backshell
Aerotech Part Number	ECK00101	ECK00656
Amphenol Part Number ⁽¹⁾	DB25P064TXLF	17E-1726-2
Maximum Wire Size	20 AWG (0.5 mm ²)	N/A
(1) Refer to the manufacturer website for additional information.		

2.3.1. Primary Encoder Inputs

The primary encoder inputs are accessible through the Feedback connector. Use the PrimaryFeedbackType parameter to configure the drive to accept an encoder signal type.

Square Wave encoder signals: Section 2.3.1.1.

Absolute encoder signals: Section 2.3.1.2.

Sine Wave encoder signals (as permitted by the multiplier option): Section 2.3.1.3.

Refer to Section 2.3.1.4. for encoder feedback phasing.

Refer to Section 2.5. for the auxiliary encoder on the Aux I/O connector.

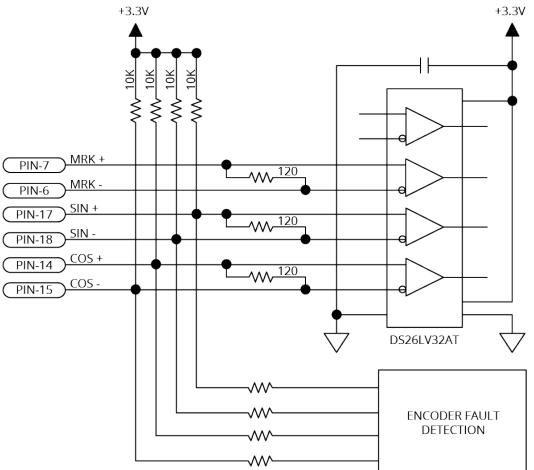
Table 2-11: Multiplier Options

Option	Primary Encoder Accepts	Auxiliary Encoder Accepts
-MX0	Square Wave or Absolute encoders	Square Wave or Absolute encoders
-MX2	Sine Wave (high performance), Square Wave, or Absolute encoders	Square Wave or Absolute encoders
-MX3	Sine Wave (high performance), Square Wave, or Absolute encoders	Sine Wave (standard performance), Square Wave, or Absolute encoders

IMPORTANT: Physically isolate the encoder wiring from motor, AC power, and all other power wiring

Table 2-12: Primary Encoder Pins on the Feedback Connector

Pin #	Description	In/Out/Bi
3	+5V Power ⁽¹⁾	Output
6	Encoder Marker Reference Pulse -	Input
0	Absolute Encoder Clock -	Output
7	Encoder Marker Reference Pulse +	Input
1	Absolute Encoder Clock +	Output
8	Absolute Encoder Data -	Bidirectional
14	Encoder Cosine +	Input
15	Encoder Cosine -	Input
16	+5V Power ⁽¹⁾	Output
17	Encoder Sine +	Input
18	Encoder Sine -	Input
19	Absolute Encoder Data+	Bidirectional
20	Signal Common	Output
21	Signal Common	Output
(1) The r	naximum combined current output is 500 mA.	


2.3.1.1. Square Wave Encoder (Primary)

The drive accepts RS-422 square wave encoder signals. The drive will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-13:	Square Wave Encoder Specifications
	equale mare Encoder opcomodions

Specification	Value	
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)	
x4 Quadrature Decoding	40 million counts/sec	

Figure 2-9: Square Wave Encoder Schematic (Feedback Connector)

2.3.1.2. Absolute Encoder (Primary)

The drive retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. You cannot echo an absolute encoder signal.


Refer to Figure 2-10 for the serial data stream interface.

Refer to the Help file for information on how to set up your EnDat, BiSS, or SSI absolute encoder parameters.

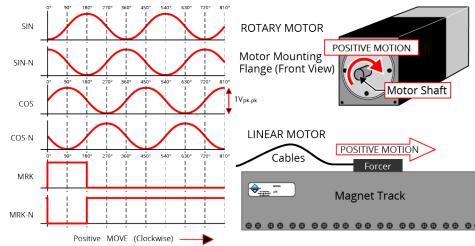
Table 2-14: Absolute Encoder Specifications

Specification	Value
Sampling Frequency	20 kHz
Maximum Reading Speed	Refer to your encoder data sheet.

Figure 2-10: Absolute Encoder Schematic (Feedback Connector)

2.3.1.3. Sine Wave Encoder (Primary) [-MX2/-MX3 Option]

The Sine Wave Encoder option provides higher positioning resolution by subdividing the fundamental output period of the encoder into smaller increments. The amount of subdivision is specified by the PrimaryEncoderMultiplicationFactor parameter. Use Encoder Tuning to adjust the value of the gain, offset, and phase balance controller parameters to get the best performance. For more information, refer to the Help file.


High resolution or high-speed encoders can require increased bandwidth for correct operation. Use the High Speed Mode of the PrimaryEncoderMultiplierSetup parameter to enable the high bandwidth mode. Because this mode increases sensitivity to system noise, use it only if necessary.

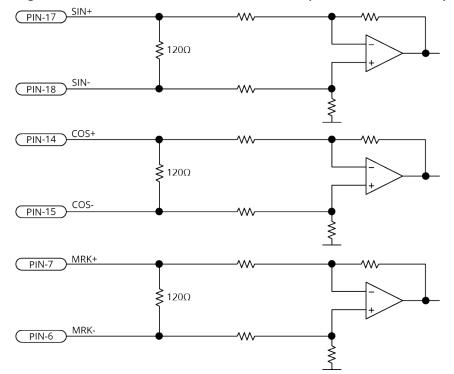
The drive can generate emulated encoder signals. These signals can be output on the Auxiliary Encoder (AUX) connector, SYNC port connector, or used internally by the PSO. Refer to the EncoderDivider and PrimaryEmulatedQuadratureDivider parameters and the encoder output functions in the Help file for more information.

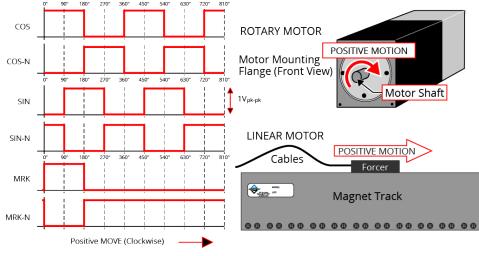
For the highest performance, use twisted pair double-shielded cable with the inner shield connected to signal common and the outer shield connected to frame ground. Do not join the inner and outer shields in the cable.

Specification		Value	
		Primary	Auxiliary
Input Frequency (max)		450 kHz, 2 MHz	450 kHz
Input Amplitude ⁽¹⁾		0.6 to 1.75 Vpk-pk	
Interpolation Factor (max)	-MX2	65,536	N/A
Interpolation Factor (max)	-MX3	65,536	16,384
-MX2/-MX3 Primary Encoder Channel Interpolation Latency		800 nsec (analog input to quadrature output)	
Input Common Mode		1.5 to 3	3.5 VDC
(1) Measured as SIN(+) - SIN(-) or COS(+) - COS(-)			

Table 2-15: Sine Wave Encoder Specifications

Figure 2-11: Sine Wave Encoder Phasing Reference Diagram




Figure 2-12: Sine Wave Encoder Schematic (Feedback Connector)

2.3.1.4. Encoder Phasing

Incorrect encoder polarity will cause the system to fault when enabled or when a move command is issued. Figure 2-13 illustrates the proper encoder phasing for clockwise motor rotation (or positive forcer movement for linear motors). To verify, move the motor by hand in the CW (positive) direction while observing the position of the encoder in the diagnostics display (see Figure 2-14).

For dual loop systems, the velocity feedback encoder is displayed in the diagnostic display (Figure 2-14).

IMPORTANT: Encoder manufacturers may refer to the encoder signals as A, B, and Z. The proper phase relationship between signals is shown in Figure 2-13.

Figure 2-14:	Position Feedback in the Diagnostic Display
--------------	---

Axes	🖯 Data highlighted in blue h	as not been updated.			
Axis Status	Item	X	Y	Z	U
Diagnostics	Status				
Drive Info	Position Feedback	00000000000000	0000000000000	0000000000000	000000000
Drive Status	Position Cal bration All	0000000000000	0000000000000	0000000000000	000000000
Fault	Position Camming/Gearing	0000000000000	0000000000000	0000000000000	000000000
Primary Feedback Status	Primary Feedback	0000000000000	0000000000000	0000000000000	000000000
) Tasks	Auxiliary Feedback	0000000000000	0000000000000	0000000000000	000000000
Task Mode	Gantry Marker Difference	0.0000	0.0000	0.0000	0.0
Task Status 0	Analog Input 0	0.0000	0.0000	0.0000	0.0
Task Status 1	Analog Input 1	0.0000	0.0000	0.0000	0.0
Task Status 2	Analog Input 2	0.0000	0.0000	0.0000	0.0
Tasks	Analog Input 3	0.0000	0.0000	0.0000	0.0
Controller Data Collection	Digital Input 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
Data Collection Drive Nodes	Digital Input 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
Ethernet	Digital Output 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
HyperWire	Digital Output 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
hyperture	Average Velocity Feedback	0000000000000	0000000000000	0000000000000	000000000
	Current Feedback	0.0000	0.0000	0.0000	0.0
	Transition Offset Errors	0	0	0	
	Hardware				
	Enable				
	CW				
	ccw				
	Home				
	Marker				
	Hall A				
	Hall B				
	Hall C				
	ESTOP				
	Brake				

2.3.2. Hall-Effect Inputs

The Hall-effect switch inputs are recommended for AC brushless motor commutation but not absolutely required. The Hall-effect inputs accept 5 VDC level signals. Hall states (0,0,0) or (1,1,1) are invalid and will generate a "Hall Fault" axis fault.

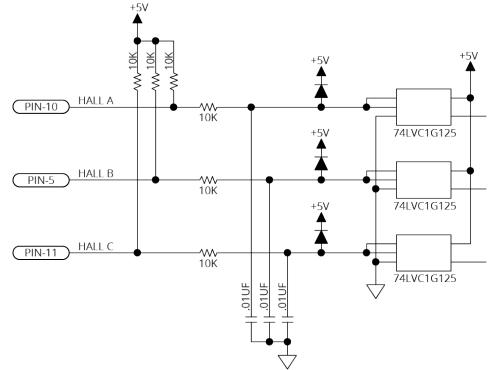
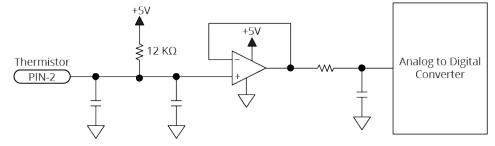

Refer to Section 2.2.1.1. for Hall-effect device phasing.

Table 2-16:	Hall-Effect Feedback Pins on the Feedback Connector
-------------	---

Output Input
loput
Input
Input
Output
Output
Output

(1) The maximum combined current output is 500 mA.

2.3.3. Thermistor Input


The thermistor input is used to detect a motor over temperature condition by using a positive temperature coefficient sensor. As the temperature of the sensor increases, so does the resistance. Under normal operating conditions, the resistance of the thermistor is low which will result in a low input signal. As the increasing temperature causes the resistance of the thermistor to increase, the sensor will trigger an over temperature fault.

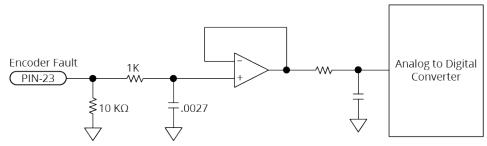
The thermistor is connected between Pin 2 and Signal Common. The nominal trip value of the sensor is 1.385 k Ω . The circuit includes a 12 k Ω internal pull-up resistor which corresponds to a trip voltage of +0.52 V.

Table 2-17: Thermistor Input Pin on the Feedback Connector

Pin #	Description	In/Out/Bi
2	Motor Over Temperature Thermistor	Input

Figure 2-16: Thermistor Input Schematic (Feedback Connector)

2.3.4. Encoder Fault Input


The encoder fault input is for use with encoders that have a fault output. This is provided by some manufacturers and indicates a loss of encoder function. The active state of this input is parameter configurable and the controller should be configured to disable the axis when the fault level is active.

The nominal trip voltage of the encoder fault input is +2.5 V.

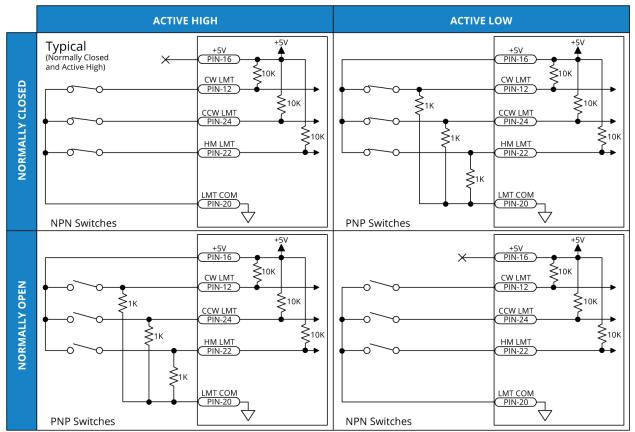
Table 2-18: Encoder Fault Input Pin on the Feedback Connector

Pin #	Description	In/Out/Bi
23	Encoder Fault Input	Input

Figure 2-17: Encoder Fault Input Schematic (Feedback Connector)

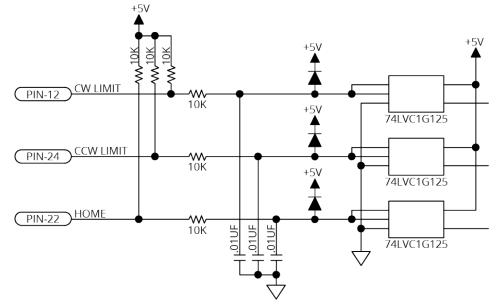
2.3.5. End of Travel and Home Limit Inputs

End of Travel (EOT) limits are required to define the end of the physical travel on linear axes. Positive or clockwise motion is stopped by the clockwise (CW) end of travel limit input. Negative or counterclockwise motion is stopped by the counterclockwise (CCW) end of travel limit input. The Home Limit switch can be parameter configured for use during the home cycle, however, the CW or CCW EOT limit is typically used instead. All of the end-of-travel limit inputs accept 0-24 VDC level signals. Limit directions are relative to the encoder polarity in the diagnostics display (refer to Figure 2-20).


Table 2-19:	End of Travel and Home Limit Pins on the Feedback Connector

Pin #	Description	In/Out/Bi	
12	Clockwise End of Travel Limit	Input	
16	16 +5V Power ⁽¹⁾ Output		
20	Signal Common	Output	
21	21 Signal Common Output		
22 Home Switch Input Input		Input	
24	Counterclockwise End of Travel Limit Input		
(1) The r	(1) The maximum combined current output is 500 mA.		

The active state (High/Low) of the EOT limits is software selectable (by the EndOfTravelLimitSetup axis parameter). Figure 2-18 shows the possible wiring configurations for normally-open and normally-closed switches and the parameter setting to use for each configuration.



IMPORTANT: Use NPN-type normally-closed limit switches (Active High) to provide fail-safe behavior in the event of an open circuit.

Figure 2-18: End of Travel and Home Limit Input Connections

2.3.5.1. End of Travel and Home Limit Phasing

If the EOT limits are reversed, you will be able to move further into a limit but be unable to move out. To correct this, swap the connections to the CW and CCW inputs at the Feedback connector or swap the CW and CCW limit functionality in the software using the EndOfTravelLimitSetup parameter. View the logic level of the EOT limit inputs in the Diagnostics display (shown in Figure 2-20).

lling rate: Medium ~	Diagnostics				
) Axes	0 Data highlighted in blue has not been updated.				
Axis Status	Item	Х	Y	Z	U
Diagnostics	Status				
Drive Info	Position Feedback	0000000000000	0000000000000	0000000000000	000000000
Drive Status	Position Calibration All	0000000000000	0000000000000	0000000000000	000000000
Fault	Position Camming/Gearing	0000000000000	0000000000000	0000000000000	000000000
Primary Feedback Status	Primary Feedback	0000000000000	0000000000000	0000000000000	00000000
) Tasks	Auxiliary Feedback	00000000000000	00000000000000	0000000000000	00000000
Task Mode	Gantry Marker Difference	0.0000	0.0000	0.0000	0.0
Task Status 0	Analog Input 0	0.0000	0.0000	0.0000	0.0
Task Status 1 Task Status 2	Analog Input 1	0.0000	0.0000	0.0000	0.
Tasks	Analog Input 2	0.0000	0.0000	0.0000	0.
ontroller	Analog Input 3	0.0000	0.0000	0.0000	0.
ontroller Data Collection	Digital Input 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000
Drive Nodes	Digital Input 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000
thernet	Digital Output 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000
lyperWire	Digital Output 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Average Velocity Feedback	000000000000000000000000000000000000000	00000000000000	0000000000000	00000000
	Current Feedback	0.0000	0.0000	0.0000	0.
	Transition Offset Errors	0	0	0	
	Hardware				
	Enable				
	CW				
	CCW				
	Home				
	Marker				
	Hall A				
	Hall B				
	Hall C				
	ESTOP				
	Brake				

Figure 2-20: End of Travel and Home Limit Input Diagnostic Display

2.3.6. Brake Outputs

The drive has a dedicated brake control circuit. Configure the brake with the BrakeSetup parameter for automatic control (typical). You can also use software commands to directly control the brake output.

Refer to Section 2.6. for more information on powering the brake circuit.

Table 2-20: Brake Output Pins on the Feedback Connector

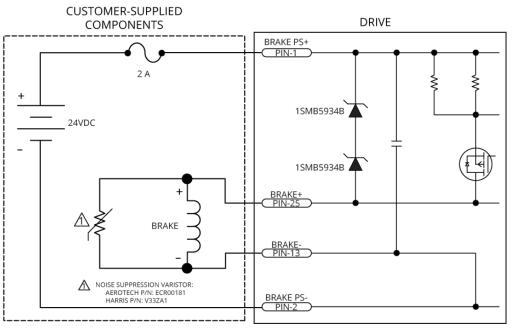

Pin #	Description	In/Out/Bi
13	Brake Output -	Output
25	Brake Output +	Output

Table 2-21: Brake Control Specifications

Specification	Value
Maximum Voltage	24 VDC
Maximum Current	1 A

A varistor must be connected across the brake to minimize voltage transients.

Figure 2-21: Brake Connected to the 25-Pin Feedback Connector (Typical)

2.4. Safe Torque Off Input (STO)

The STO circuit is comprised of two identical channels, each of which must be energized in order for the drive to produce motion. Each STO input is opto-isolated and accepts 24 V levels directly without the need for external current limiting resistors.

IMPORTANT: The drive might be equipped with an STO bypass circuit board. The bypass circuit board defeats the STO safety circuit and allows the system to run at all times. To use the STO safety functionality, remove the circuit board and make connections as outlined in this section. Refer to Installation Overview on Page 15 for the location of the STO bypass plug.

IMPORTANT: The application circuit and its suitability for the desired safety level is the sole responsibility of the user of the drive.

WARNING: STO wires must be insulated to prevent short circuits between connector pins. The primary concern is a short circuit between STO 1 IN and STO 2 IN wire strands.

Table 2-22: STO Connector Pinout

Pin #	Signal	Description	In/Out/Bi	Connector
1	Power Supply +	Use only to defeat STO by connecting to STO 1 IN and STO 2 IN. Not for customer use.	Output	
2	STO 1 IN	STO Channel 1 Positive Input	Input	+V STO 1 IN
3	RETURN	STO Negative Input	Input	RETURN
4	STO 2 IN	STO Channel 2 Positive Input	Input	STO 2 IN
5	Power Supply -	Use only to defeat STO by connecting to RETURN. Not for customer use.	Output	

Table 2-23: STO Mating Connector Ratings

Specification		Description	
Туре		5-Pin Terminal Block	
Dort Numbero		Aerotech: ECK02393	
Part Numbers		Phoenix: 1827622	
Conductor Cross Section	One conductor, stranded with ferrule and plastic sleeve	1822 AWG (0.250.75 mm ²)	
	Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve	20 AWG (0.5 mm ²)	
Tightening Torque		0.220.25 N⋅m	
Conductor Insulation Strip Length		7 mm (0.25 in)	
(1) Refer to the manufa	cturer website for additional information.		

Table 2-24: STO Electrical Specifications

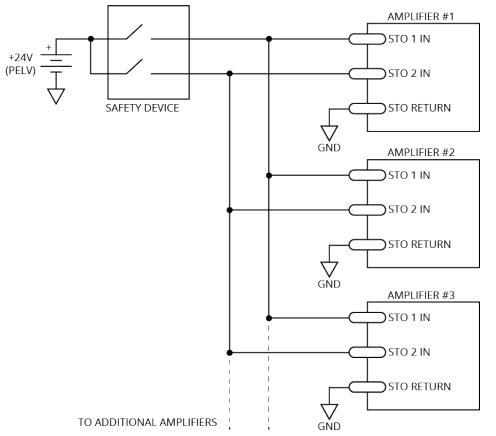

Status	Value
STO off (motion allowed)	18-24 V, 7 ma
STO on (safe state entered, no motion)	0-6 V
Recommended Wire Gauge	22-26 AWG (0.5 - 0.14 mm ²)
STO System Power Supply	PELV
STO Wire Length (maximum)	50 m

Figure 2-22 shows one safety device connected to multiple drives in parallel.

WARNING: The drive does not check for short circuits on the external STO wiring. If this is not done by the external safety device, short circuits on the wiring must be excluded. Refer to EN ISO 13849-2. For Category 4 systems, the exclusion of short circuits is mandatory.

Figure 2-22: Typical STO Configuration

2.4.1. STO Standards

Table 2-25 describes and specifies the safety requirements at the system level for the Safe Torque Off (STO) feature of the drive. This assumes that diagnostic testing is performed according to Section 2.4.4. and Table 2-26.

Standard	Maximum Achievable Safety
EN/IEC 61800-5- 2:2016	SIL 3
EN/IEC 61508-1:2010	SIL 3
EN/IEC 61508-2:2010	SIL 3
EN ISO 13849-1:2015	Category 4, PL e
EN/IEC 62061:2005 with Amendments	SIL 3

Table 2-26: STO Standards Data

Standard	Value
	MTTF _D > 1000 years,
EN ISO 13849-1:2015	DC _{AVG} 99%
	Maximum PL e, Category 4
	Lifetime = 20 years
	No proof test required
EN ISO 13849-1:2015	Interval for manual STO test:
EN/IEC 61508	Once per year for SIL2/PL d/category 3
	 Once per three months for SIL3/PL e/category 3 Once per day for SIL3/PL e/category 4
	SIL3
EN/IEC 61508	PFH < 3 FIT
	SFF > 99%

2.4.2. STO Functional Description

The motor can only be activated when voltage is applied to both STO 1 and STO 2 inputs. The STO state will be entered if power is removed from either the STO 1 or the STO 2 inputs. When the STO state is entered, the motor cannot generate torque or force and is therefore considered safe. Both STO channels must be driven at the same time. If they are not driven at the same time, a diagnostic test failure will occur (refer to STO Diagnostics).

The STO function is implemented with two redundant channels in order to meet stated performance and SIL levels. STO 1 disconnects the high side power amplifier transistors and STO 2 disconnects the low side power amplifier transistors. Disconnecting either set of transistors effectively prevents the drive from being able to produce motion.

The drive software monitors each STO channel and will generate an Emergency Stop software fault when either channel signals the stop state. Each STO channel contains a fixed delay which allows the drive to perform a controlled stop before the power amplifier transistors are turned off.

A typical configuration requiring a controlled stop has the Emergency Stop Fault mask bit set in the FaultMask, FaultMaskDecel, and FaultMaskDisable parameters. This stops the axis using the rate specified by the AbortDecelRate parameter. The software will disable the axis as soon as the deceleration ramp is complete. This is typically configured to occur before the STO channel turns off the power amplifier transistors.

The software-controlled stop functionality must be excluded when considering overall system safety. This is because the software is not safety rated and cannot be included as part of the safety function.

The software-controlled stop function can ignore short diagnostic pulses on the STO 1+ and STO 2+ inputs. The parameter "STOPulseFilter" specifies the maximum pulse width that the software will ignore. The filter parameter does not affect the operation of STO hardware channels.

To resume normal operation, apply power to both STO 1 and STO 2 inputs and use the *Acknowledge All* button or the AcknowledgeAll() or FaultAcknowledge() function to clear the Emergency Stop software fault. The recommended use of the Emergency Stop Fault fault mask bits prevent the system from automatically restarting.

You can achieve longer delay times through the use of an external delay timer, such as the Omron G9SA-321 Safety Relay Unit. Place this device between the system ESTOP wiring and the drive's STO inputs. Connect the ESTOP signal directly to a digital input, in addition to the external timer, to allow the drive to begin a software-controlled stop as soon as the ESTOP signal becomes active. Use the EmergencyStopFaultInput parameter to configure a digital input as an ESTOP input.

The STO feature can only be used with AC or stepper motor types. It is not certified to prevent hazardous motion when using DC brush motor types.

Non-standard STO delay times are provided by special factory order. In this case, the non-standard STO delay time is indicated by a label placed on the slice amplifier's main connector (STO DELAY = xx sec).

Table 2-27:STO Signal Delay

	Value
STO Time Delay	450-550 msec

Table 2-28: Motor Function Relative to STO Input State

STO 1	STO 2	Motor Function
Unpowered	Unpowered	No force/torque
Unpowered ⁽¹⁾	Powered ⁽¹⁾	No force/torque
Powered ⁽¹⁾	Unpowered ⁽¹⁾	No force/torque
Powered	Powered	Normal Operation
1. This is considered a Fault Condition since STO 1 and STO 2 do not match. Refer to Section 2.4.4.		

2.4.3. STO Startup Validation Testing

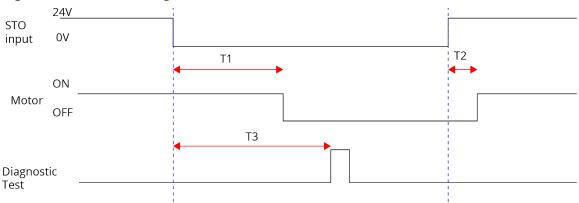
Verify the state of the STO 1 and STO 2 channels by manually activating the external STO hardware. Each STO channel must be tested separately in order to detect potential short circuits between the channels. The current state of the STO 1 and STO 2 inputs is shown in the Status Utility. A "–" indicates that the STO input is powered by a high voltage level (24 V). An "ON" indicates that the voltage source has been removed from the input (open circuit or 0 V), and that the STO channel is in the safe state.

DANGER: The STO circuit does not remove lethal voltage from the motor terminals. AC mains power must be removed before servicing.

2.4.4. STO Diagnostics

Activation of STO means removing power from the drive STO inputs. This is typically done by pressing the emergency stop switch. The drive initiates a diagnostic check every time the STO is activated after the Diagnostic Test Delay Time has elapsed. The diagnostic check verifies that each channel has entered the safe state. The drive is held in the safe state if it determines that one of the channels has not properly entered the safe state. An open circuit or short to 24 V in either STO channel will result in this condition (refer to Section 2.4.3.). The Status Utility screen can be used to verify the levels of the STO input signals while troubleshooting. The safe state is cleared when both STO channels are cycled with matching signal levels such that the diagnostic test completes successfully.

The drive is held in the safe state if it determines that one of the channels has not properly entered the safe state. In this case, the stoCrossCheckFault bit will be set and can be viewed in the **STO Status** status item. A **Position Error Fault** or **Emergency Stop Fault** will occur if motion is attempted while in this state. The drive will remain in the safe state until STO is reactivated with both channels in a safe state such that the diagnostics test completes successfully.


An open circuit or short to 24 V in either STO channel or a timing difference between the channels will result in a diagnostic test failure (refer to STO Startup Validation Testing). The Status Utility screen or **STO Status** status item can be used to verify the levels of the STO input signals while troubleshooting.

In order to pass internal testing, the STO circuit must be activated (power removed from both inputs) according to the interval specified in Table 2-26.

Table 2-29: STO Timing

Time	Description Value	
T1	STO Delay Time (STO input active to motor power off)	450-550 msec
T2	STO deactivated to motor power on (the software is typically configured so that the motor does not automatically re-energize).	< 1 msec
T3	Diagnostic Test Delay Time	550-610 msec

Figure 2-23: STO Timing

The software is typically configured to execute a controlled stop when the STO state is first detected. If power is reapplied to the STO inputs before the STO Delay Time, an STO hardware shutdown will not occur but a software stop may, depending on the width of the STO pulse. The controller will ignore STO active pulses shorter in length than the STOPulseFilter parameter setting.

2.5. Auxiliary I/O Connector

The Auxiliary I/O connector has 1 analog input, 6 digital inputs, 1 analog output, 4 digital outputs, a secondary line driver encoder input, and a secondary absolute encoder interface.

 Table 2-30:
 Auxiliary I/O Connector Pinout

Pin#	Description	In/Out/Bi	Connector
1	Auxiliary Sine +	Bidirectional	
I	Absolute Encoder Data +	Bidirectional	
2	Auxiliary Sine -	Bidirectional	
2	Absolute Encoder Data -	Bidirectional	
3	High-Speed Input 20 + / PSO External Sync. +	Input	
4	High-Speed Input 20 - / PSO External Sync	Input	
5	High-Speed Input 21 +	Input	
6	High-Speed Input 21 -	Input	
7	Digital Output 0	Output	
8	Digital Output 1	Output	
9	Digital Output 2	Output	
10	Auxiliary Cosine +	Bidirectional	9
10	Absolute Encoder Clock +	Output	26 (18)
11	Auxiliary Cosine-	Bidirectional	<u> </u>
	Absolute Encoder Clock -	Output	
12	+5 V (500 mA max)	Output	
13	Analog Input 0+ (Differential)	Input	I Q Q Q
14	Analog Input 0- (Differential)	Input	
15	Digital Output Common	Output	
16	Digital Output 3	Output	
17	Digital Input 0 / CCW EOT Input ⁽¹⁾	Input	
18	Digital Input 1 / CW EOT Input ⁽¹⁾	Input	
19	Auxiliary Marker - / PSO ⁽²⁾ Differential Output - / PSO TTL Output	Bidirectional	
20	Auxiliary Marker + / PSO ⁽²⁾ Differential Output +	Bidirectional	
21	Common	Output	
22	Analog Output 0	Output	
23	Analog Common	Output	
24	Digital Input Common	Output	
25	Digital Input 2 / Home Input ⁽¹⁾	Input	
26	Digital Input 3	Input	
. ,	are configured option		
(2) For P	SO, refer to Section 2.5.2.		_

Table 2-31: Auxiliary I/O Mating Connector Ratings

Specification	26-Pin Solder Cup	Backshell	
Aerotech Part Number	ECK01259	ECK01022	
Manufacturer Part Number ⁽¹⁾	Kycon K86-AA-26P	Amphenol 17E-1725-2	
Maximum Wire Size	22 AWG (0.25 mm ²)	N/A	
(1) Refer to the manufacturer website for additional information.			

2.5.1. Auxiliary Encoder Interface

The Auxiliary Encoder connector gives you a second encoder channel. This channel is typically used for dual loop applications.

Use the AuxiliaryFeedbackType parameter to configure the iXC6e/XC6e to accept an encoder signal type.

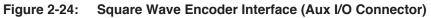
Square Wave encoder signals: Section 2.5.1.1.

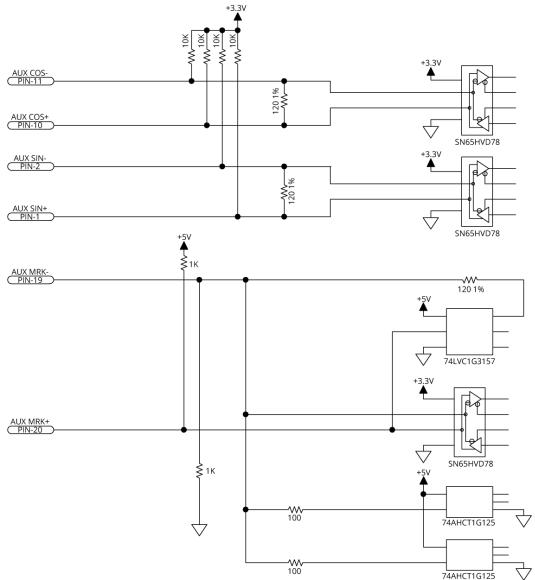
Absolute encoder signals: Section 2.5.1.2.

Sine Wave encoder signals (with the -MX3 option): Section 2.5.1.3.

You can configure the Auxiliary Encoder interface as an output that will transmit encoder signals for external use. Use the DriveEncoderOutputConfigureInput() function to configure the Sine ± and Cosine ± connector pins as RS-422 outputs. You can only echo incremental square wave primary encoder inputs or, with the - MX2 or -MX3 option, incremental sine wave primary encoder inputs. You cannot use the absolute encoder interface when you echo incremental signals.

 Table 2-32:
 Auxiliary Encoder Pins on the Auxiliary I/O Connector


Pin#	Description	In/Out/Bi
1	Auxiliary Sine +	Bidirectional
1 Absolute Encoder Data +		Bidirectional
2	Auxiliary Sine -	
2	Absolute Encoder Data -	Bidirectional
10	Auxiliary Cosine +	Bidirectional
		Output
11	Auxiliary Cosine- Bidirection	
11	Absolute Encoder Clock - Output	
12	+5 V (500 mA max)	Output
19	Auxiliary Marker - / PSO ⁽²⁾ Differential Output - / PSO TTL Output	Bidirectional
20	Auxiliary Marker + / PSO ⁽²⁾ Differential Output + Bidirectional	
21	Common Output	
(2) For PS	O, refer to Section 2.5.2.	


2.5.1.1. Square Wave Encoder (Auxiliary)

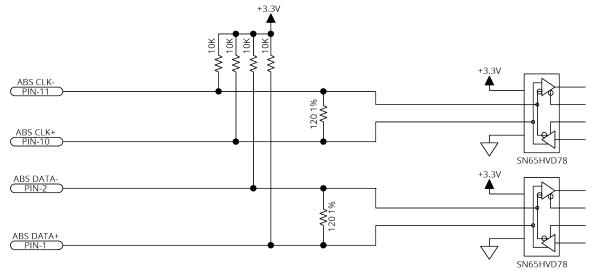
The drive accepts RS-422 square wave encoder signals. The drive will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-33: Square Wave Encoder Specifications	Table 2-33:	Square	Wave	Encoder	Specifications
--	-------------	--------	------	---------	----------------

Specification	Value
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)
x4 Quadrature Decoding	40 million counts/sec

2.5.1.2. Absolute Encoder (Auxiliary)

The drive retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. You cannot use an absolute encoder with incremental signals on the Auxiliary I/O Connector.


Refer to Figure 2-25 for the serial data stream interface.

Refer to the Help file for information on how to set up your EnDat, BiSS, or SSI absolute encoder parameters.

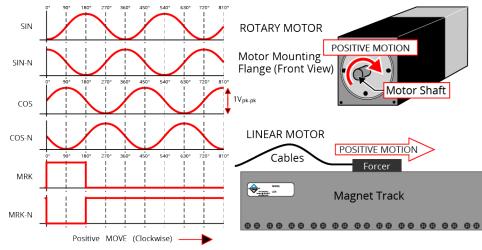
Table 2-34: Absolute Encoder Specifications

Specification	Value
Sampling Frequency	20 kHz
Maximum Reading Speed	Refer to your encoder data sheet.

Figure 2-25: Absolute Encoder Schematic (Auxiliary I/O Connector)

2.5.1.3. Sine Wave Encoder (Auxiliary) [-MX3 Option]

The Sine Wave Encoder option provides higher positioning resolution by subdividing the fundamental output period of the encoder into smaller increments. The amount of subdivision is specified by the AuxiliaryEncoderMultiplicationFactor parameter. Use Encoder Tuning to adjust the value of the gain, offset, and phase balance controller parameters to get the best performance. For more information, refer to the Help file.


You cannot use the sine wave encoder on the auxiliary connector with the -MX3 multiplier option as an input to the PSO. The -MX3 option does not generate emulated quadrature signals from the auxiliary connector.

For the highest performance, use twisted pair double-shielded cable with the inner shield connected to signal common and the outer shield connected to frame ground. Do not join the inner and outer shields in the cable.

Specification		Value	
		Primary	Auxiliary
Input Frequency (max)		450 kHz, 2 MHz	450 kHz
Input Amplitude ⁽¹⁾		0.6 to 1.75 Vpk-pk	
Internalation Factor (max)	-MX2	65,536	N/A
Interpolation Factor (max)	-MX3	65,536	16,384
-MX2/-MX3 Primary Encoder Channel Interpolation Latency		800 nsec (analog input	t to quadrature output)
Input Common Mode		1.5 to 3	.5 VDC
(1) Measured as SIN(+) - SIN(-) or C	OS(+) - COS(-)		

Table 2-35: Sine Wave Encoder Specifications

Figure 2-26: Sine Wave Encoder Phasing Reference Diagram

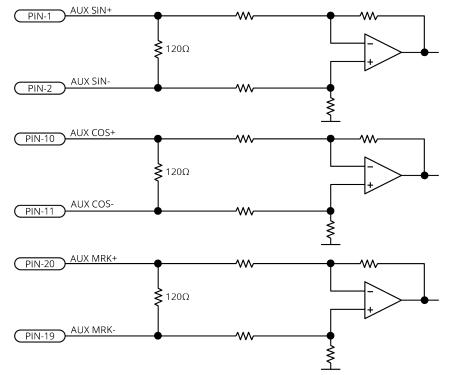


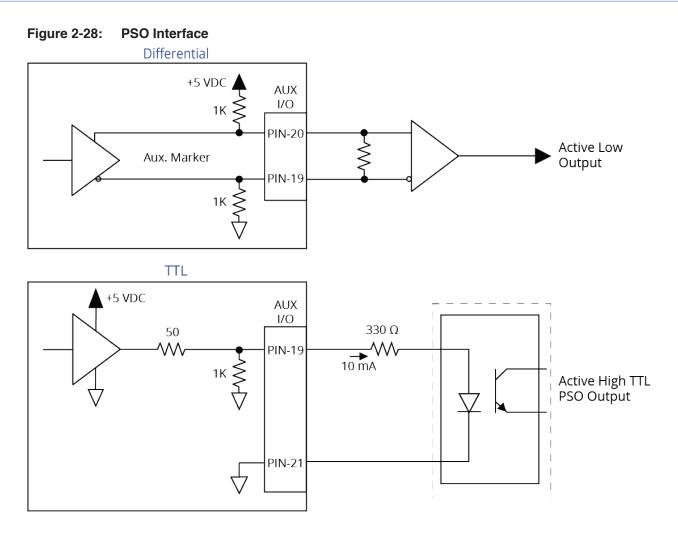
Figure 2-27: Sine Wave Encoder Schematic (Auxiliary I/O Connector)

2.5.2. Position Synchronized Output (PSO)

The PSO signal is available on the dual-function AUX Marker/PSO signal lines. Use the PSO pulse external sync functions to configure the auxiliary marker as an output. Refer to the Help file for more information. Use the PsoOutputConfigureOutput() function to transmit the PSO output signal on the Marker ± pins differentially. Or, use the PsoOutputConfigureOutput() function to configure the Marker - pin as a 5V TTL PSO output.

When configured for differential use with pin 19 as PSO Differential Output - and pin 20 as PSO Differential Output +, the PSO output is active low. Figure 2-28 shows how the output pins are biased so that the output is in the OFF state when it is not actively driven. If you want an active high output, you can change the pins so that pin 19 is the PSO Differential Output + and pin 20 is the PSO Differential Output -.

The differential signal format is recommended when using long cable lengths in noisy environments or when high frequency pulse transmission is required. It is best to locate the line receiver close to the receiving electronics. A 5 V TTL signal is used to drive an opto coupler or general purpose TTL input. This signal is active high and is driven to 5 V when a PSO fire event occurs. When the drive is reset or after initial power up, the PSO pins (refer to Table 2-37), are not actively driven and the fail safe state is defined by pull-up and pull-down resistors as shown in Figure 2-28.


The -EB1 I/O option board has additional PSO signal formats. Refer to Section 3.5. for more information.

Specification		Value
Output	TTL	5 V, 16 mA (max)
Maximum PSO Output (Fire) Frequency	TTL	12.5 MHz
Maximum FSO Output (Fire) Frequency	RS-422	12.5 MHz
Output Latency	TTL	25 ns
[Fire event to output change]	RS-422	25 ns

Table 2-36: PSO Specifications

Table 2-37: PSO Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
19	Auxiliary Marker - / PSO Differential Output - / PSO TTL Output	Bidirectional
20	Auxiliary Marker + / PSO Differential Output +	Bidirectional
21	Common	Output

2.5.3. Digital Outputs

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in the same configuration. Refer to Figure 2-30 and Figure 2-31.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 2-30. To see an example of a current sinking output that has diode suppression, refer to Figure 2-31.

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

Table 2-38: Digital Output Specifications

Digital Output Specifications	Value
Maximum Voltage	24 V (26 V Maximum)
Maximum Sink/Source Current	250 mA/output
Output Saturation Voltage	0.9 V at maximum current
Output Resistance	3.7 Ω
Rise / Fall Time	250 µs (2K pull up to 24V)
Reset State	Output Off (High Impedance State)

Table 2-39: Digital Output Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
7	Digital Output 0	Output
8	Digital Output 1	Output
9	Digital Output 2	Output
15	Digital Output Common	Output
16	Digital Output 3	Output

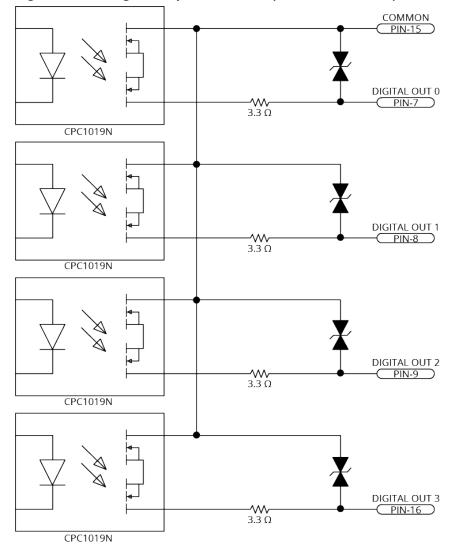
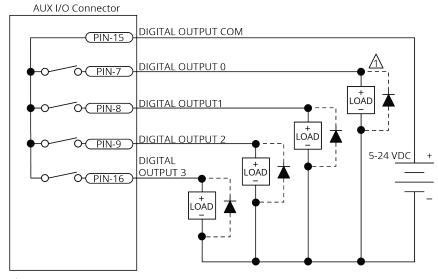



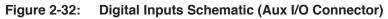
Figure 2-29: Digital Output Schematic (Aux I/O Connector)

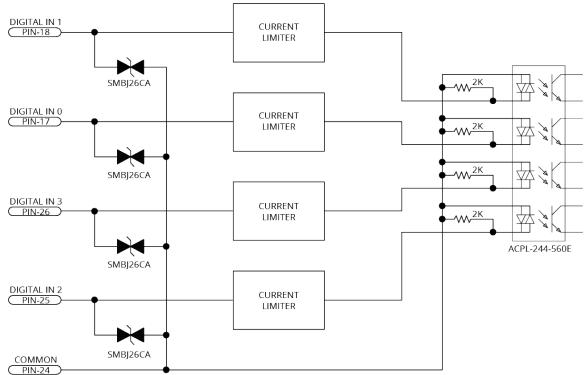
Figure 2-30: Digital Outputs Connected in Current Sourcing Mode

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

1 DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

2.5.4. Digital Inputs


You can connect the digital inputs to current sourcing or current sinking devices but you must connect all four inputs in the same configuration. Refer to Figure 2-33 and Figure 2-34. The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.


Table 2-40:	Digital Input Spec	cifications
-------------	--------------------	-------------

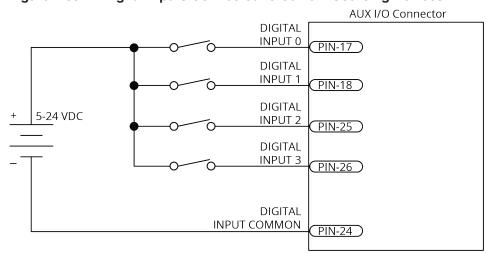
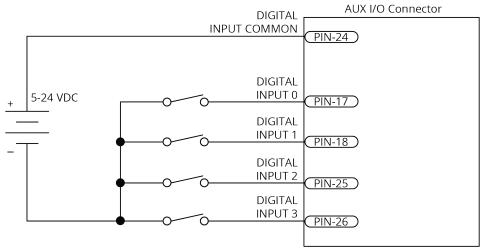

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V to +24 V	6 mA	10 µs	43 µs

Table 2-41: Digital Input Pins on the Auxiliary I/O Connector

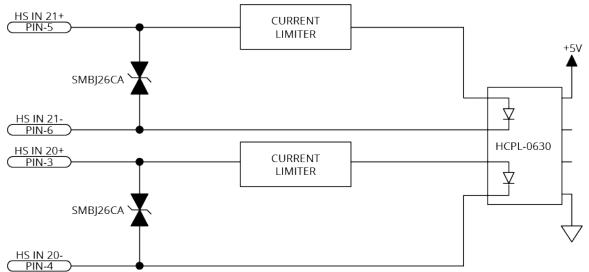
Pin#	Description	In/Out/Bi
17	Digital Input 0 / CCW EOT Input ⁽¹⁾	Input
18	Digital Input 1 / CW EOT Input ⁽¹⁾	Input
24	Digital Input Common	Output
25	Digital Input 2 / Home Input ⁽¹⁾	Input
26	Digital Input 3	Input
(1) Software configured option		



2.5.5. High-Speed Inputs

High-speed inputs 20 and 21 can be used as general purpose inputs or as the trigger signal for high speed data collection. Refer to the DriveDataCaptureConfigureTrigger() function topic in the Help file for more information.

You can use the external PSO synchronization functions to synchronize waveform generation with an external synchronization signal. When you activate this feature, the PSO Waveform module will not generate the configured waveform when an output event is received until the rising edge of the synchronization signal occurs.


Table 2-42: High-Speed Input Specifications

Specification	Value
Input Voltage	5V - 24 V input voltages
Input Current	10 mA
Input Device	HCPL-0630
Delay	50 nsec

Table 2-43: High-Speed Input Pins on the Auxiliary I/O Connector

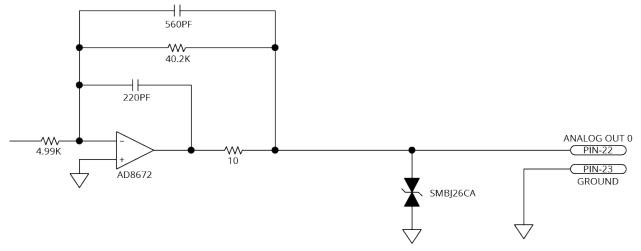
Pin#	Description	In/Out/Bi
3	High-Speed Input 20 + / PSO External Sync. +	Input
4	High-Speed Input 20 - / PSO External Sync	Input
5	High-Speed Input 21 +	Input
6	High-Speed Input 21 -	Input

Figure 2-35: High-Speed Inputs

2.5.6. Analog Output 0

The analog output can be set from within a program or it can be configured to echo the state of select servo loop nodes.

The analog output is set to zero when you power on the system or reset the drive.


 Table 2-44:
 Analog Output Specifications

Specification	Value
Output Voltage	-10 V to +10 V
Output Current	5 mA
Resolution (bits)	16 bits

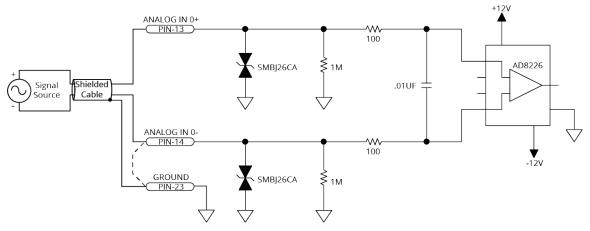
Table 2-45: Analog Output Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
22	Analog Output 0	Output
23	Analog Common	Output

Figure 2-36: Analog Output 0 Schematic

2.5.7. Analog Input 0 (Differential)

To interface to a single-ended, non-differential voltage source, connect the signal common of the source to the negative input and connect the analog source signal to the positive input. A floating signal source must be referenced to the analog common. Refer to Figure 2-37.


 Table 2-46:
 Analog Input Specifications

Specification	Value	
(AI+) - (AI-)	+10 V to -10 V ⁽¹⁾	
Resolution (bits)	16 bits	
Input Impedance	1 MΩ	
1. Signals outside of this range may damage the input		

Table 2-47: Analog Input Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
13	Analog Input 0+ (Differential)	Input
14	Analog Input 0- (Differential)	Input
23	Analog Common	Output

Figure 2-37: Analog Input 0 Schematic

2.6. Brake Power Supply Connector

This port is the power supply connection to the on-board brake control circuit. Refer to Section 2.3.6. for more information about the brake output interface.

 Table 2-48:
 Brake Power Supply Connector Pinout

Pin#	Description	In/Out/Bi	Connector
1	Brake Power Supply (+)	Input	+
2	Brake Power Supply (-)	Input	i i i i i i i i i i i i i i i i i i i

Table 2-49: Brake Power Supply Mating Connector Ratings

Specification		Description	
Туре		2-Pin Terminal Block	
Part Numbers		Aerotech: ECK02391	
		Phoenix: 1827635	
O and water Orace	One conductor, stranded with ferrule and plastic sleeve	1822 AWG (0.250.75 mm ²)	
Conductor Cross Section	Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve	20 AWG (0.5 mm ²)	
Tightening Torque		0.220.25 N⋅m	
Conductor Insulation Strip Length		7 mm (0.25 in)	
(1) Refer to the manufacturer website for additional information.			

2.7. HyperWire Interface

The HyperWire bus is the high-speed communications connection from the controller. It operates at 2 gigabits per second. The controller sends all command and configuration information through the HyperWire bus. This device consumes one of the available axes of control on the HyperWire communication network. Refer to your Automation1-iSMC license for the number of available HyperWire axes.

HyperWire cables can be safely connected to or disconnected from a HyperWire port while the PC and/or drive is powered on. However, any changes to the HyperWire network topology will disrupt communication and you must reset the controller to re-establish communication.

WARNING: Do not connect or disconnect HyperWire cables while you are loading firmware or damage to the drives may occur.

Table 2-50: HyperWire Card Part Number

Part Number	Description
HYPERWIRE-PCIE	HyperWire adapter, PCIe x4 interface

Table 2-51: HyperWire Cable Part Numbers

Part Number	Description
HYPERWIRE-AO10-5	HyperWire cable, active optical, 0.5 m
HYPERWIRE-AO10-10	HyperWire cable, active optical, 1.0 m
HYPERWIRE-AO10-30	HyperWire cable, active optical, 3.0 m
HYPERWIRE-AO10-50	HyperWire cable, active optical, 5.0 m
HYPERWIRE-AO10-200	HyperWire cable, active optical, 20.0 m

2.8. Bus Link Connector

The BUS LINK connector provides access to the internal DC motor bus supply (DC link) voltage and shunt (brake) resistor connections. The shunt and bus connections do not contain internal fuses. External fuses could be required to meet local electrical safety regulations. Refer to Section 1.4. for additional information.

Shunt Resistor:

The shunt resistor is used to dissipate excess energy keeping the internal drive voltage within safe levels. The internal shunt resistor is used by connecting the Internal Shunt terminal to an external fuse and then to the Shunt Return terminal. An external resistor if used is connected between the External Shunt and Shunt Return terminals. The external and internal shunt connections cannot be used at the same time. The shunt turn on and off voltages are shown in Table 2-54. The drive will turn off if the internal voltage exceeds safe operating levels. The controller parameters ShuntThermalTimeConstant and ShuntNormalizedTemperatureFactor are used to protect the shunt resistor from generating excessive heat. Additional means of protecting an external shunt resistor from overload, such as a thermal shut off switch or fuse is recommended.

DC Bus±:

The DC Bus connection may be used to share the motor supply between multiple drives. This increases efficiency in the case where the regenerative energy from one drive can be used by another. Connection between drives should only be made between drives that share the same motor supply breaker.

DANGER: Shock and Fire Hazard

Electrical wiring must be designed and installed in accordance with local electrical safety regulations to prevent the risk of fire and electrical shock.

The shunt resistor dissipates a high quantity of power. To prevent the danger of electric shock or fire, you must obey the precautions that follow:

- Correctly size, mount, and protect the external shunt resistor.
- Protect the wiring to the internal shunt resistor terminals.
- Do not touch the shunt resistor terminals. There are lethal voltages on the terminals.
- Do not touch the surface of the drive or the external shunt resistor. The temperature can exceed 70°C.
- Restrict access to the shunt resistor while it is connected to a power source.
- Wait 10 minutes after you disconnect power before you access the BUS LINK connector.
- Make sure that the voltage between the DC Bus + and DC Bus terminals is less than 50 V before you access it.

Table 2-52: B	us Link Connecto	r Pinout
---------------	------------------	----------

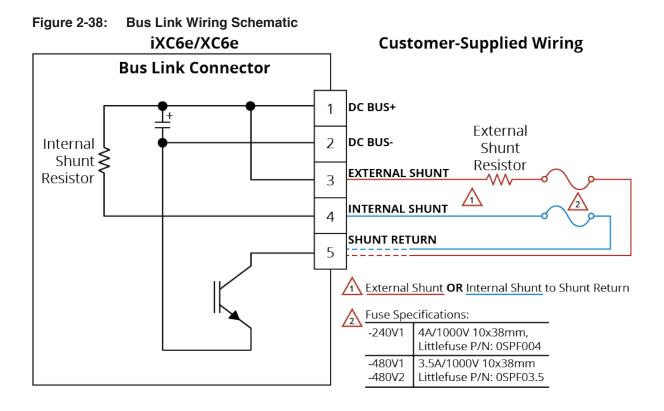
Pin	Description	Connector
DC Bus +	Positive motor supply internal voltage (DC link +)	
DC Bus -	Negative motor supply internal voltage (DC link -)	DC BUS+
External Shunt	Connect an external shunt resistor between this terminal and the Shunt Return terminal	DC BUS- EXTERNAL SHUNT
Internal Shunt	To use the internal shunt resistor, connect this terminal to an external fuse. Connect the opposite end of the fuse to the Shunt Return terminal.	SHUNT RETURN
Shunt Return	Return connection for the internal or external shunt resistor.	

Table 2-53: Bus Link Mating Connector Ratings

Specification		Description	
Туре		5-Pin Terminal Block	
Part Numbers		Aerotech: ECK02494	
		Phoenix: 1784088	
Conductor Cross Section	One conductor, stranded with ferrule and plastic sleeve	814 AWG (2.54 mm ²)	
	Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve	14 AWG (2.5 mm ²)	
Tightening Torque		0.30.7 N·m	
Conductor Insulation Strip Length		10 mm (3/8 in)	
(1) Refer to the manufacturer website for additional information.			

Table 2-54: Internal Shunt Specifications

Option	Description	Part Numbers Vishay/Dale [Aerotech]	Turn-On Range (VDC)	Turn-Off Range (VDC)
-240V1	50 Ω (min), 300 W	RBEF030050R00KFBVT [ECR01039]	380 - 395	360 - 370
-480V1, -480V2	125 Ω (min), 300 W	RBEF0300125R0KFBV [ECR01045]	865 - 880	815 - 830



IMPORTANT: An external fuse must be added in series with the internal shunt when used. -240V1: 4A/1000V 10x38mm, Littlefuse P/N: 0SPF004

-480V1 and -480V2: 3.5A/1000V 10x38mm, Littlefuse P/N: 0SPF03.5

Table 2-55: Maximum Recommended Shunt Current

Peak Current Option	Value
-10	10 A
-20	10 A
-30	10 A
-50	20 A
-100	20 A

Equation 1:

Calculate the kinetic energy of the system. Any energy that is not lost to the system could be regenerated to the DC bus.

 $E_{M} = [1/2] [J_{M} + J_{L}] \omega_{M}^{2}$; rotary motors $E_{M} = [1/2] [M_{M} + M_{L}] v_{M}^{2}$; linear motors Where: J_{M} = rotor inertia (kg·m²) J_T = load inertia $(kg \cdot m^2)$ = motor speed before deceleration (rad/s) ω_M = forcer mass (kg) MM M_{T.} = load mass (kg) = velocity (m/s) VM

Equation 2:

You will need a shunt resistor if the regenerated energy is greater than the Maximum Additional Storage Energy that the internal bus capacitor can store (Table 2-56).

$$E_{Ca} = (1/2) \cdot C \cdot (V_{M}^{2} - V_{NOM}^{2})$$

Where: C = bus capacitor (F) [4,800 μ F or 1500 μ F] V_M = turn on voltage for shunt circuit (V) [380 V or 865 V] V_{NOM} = nominal bus voltage (V) [320 V or 680 V, Typical]

Table 2-56: Maximum Additional Storage Energy for a Standard iXC6e/XC6e

Bus Voltage	Maximum Additional Energy
320 V	100.8 J
680 V	214 J

If a shunt resistor is required, calculate the value of resistance necessary to dissipate the energy.

Equations 3, 4, and 5:

Calculate the parameters of the shunt resistor.

 $P_{PEAK} = (E_M - E_{Ca}) / t_D$

Equation 3:

Where: P_{PEAK} = peak power the regeneration circuit must accommodate (W) t_D = deceleration time (s)

Equation 4:

$$\begin{split} P_{AV} = & (E_M - E_{Ca}) \ / \ t_{CYCLE} \\ & \\ Where: \\ & P_{AV} & = \text{average power dissipated on shunt resistor (W)} \\ & & \\ & t_{CYCLE} & = \text{time between deceleration events (s)} \end{split}$$

Equation 5:

R = (2V_{M} - V_{HYS}) 2 / $4\,P_{\text{PEAK}}$

```
Where:

V_{HYS} = hysteresis voltage of regeneration circuit (V) [20 V or

40 V, Typical (refer to Table 2-54)]
```

Additional useful equations:

```
1 lb·ft = 1.356 N·m
1 rad/s = 9.55 rpm
```

2.9. Sync Port

The Sync port is a bi-directional high speed proprietary interface that lets you transmit encoder signals between drives. The drive contains two Sync ports, labeled A and B. To avoid signal contention, all Sync ports default to the input state during reset and immediately after power is applied to the drive.

This is typically used for multi-axis PSO applications where one or two drives send their encoder signals to a main drive that has the PSO logic and PSO output signal.

Table 2-57: Sync-Related Functions

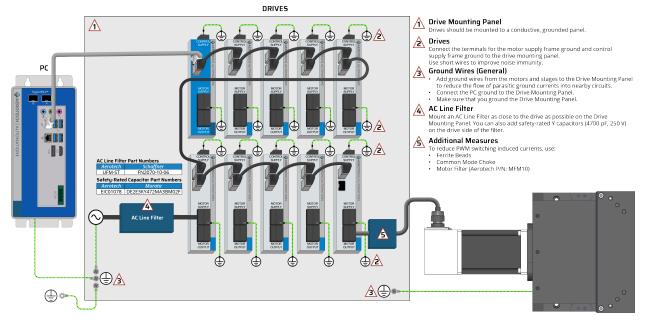
Function	Description
DriveEncoderOutputConfigureDivider(),	
DriveEncoderOutputConfigureInput(),	Configure coch Superport op on input or on output
DriveEncoderOutputOn(),	Configure each Sync port as an input or an output
DriveEncoderOutputOff()	
PsoDistanceConfigureInputs()	Let the PSO track the SYNC A or SYNC B port.
PsoWindowConfigureInput()	Let the PSO track the STNC A of STNC B port.

The Sync port uses low-voltage differential signaling (LVDS) and standard USB 3.0 type A (cross over) cables.

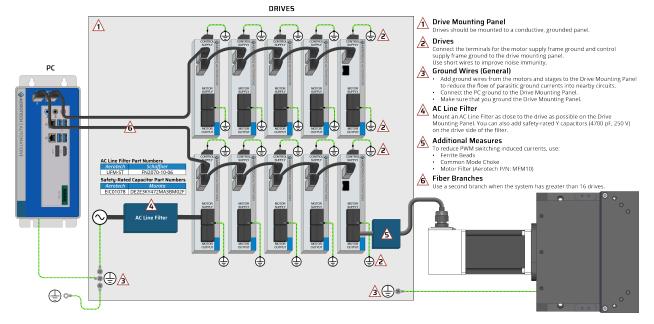
Table 2-58: Sync Port Cables

Part Number	Desciption
CBL-SYNC-3	Length 3 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-5	Length 5 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-7	Length 7 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-10	Length 10 dm; Connectors: USB Type A to USB Type A

2.10. Industrial Ethernet (iXC6e Only)


The controller is equipped with 100BASE-TX Industrial Ethernet ports.

IMPORTANT: Industrial Ethernet is only available on the iXC6e.


- For the location of the ports, refer to Figure 1-1.
- For cable part numbers, refer to Table 4-1.
- For more information, refer to the Help system.

2.11. System Interconnection

Figure 2-40: PC-Based System Wiring Drawing (Best Practice)

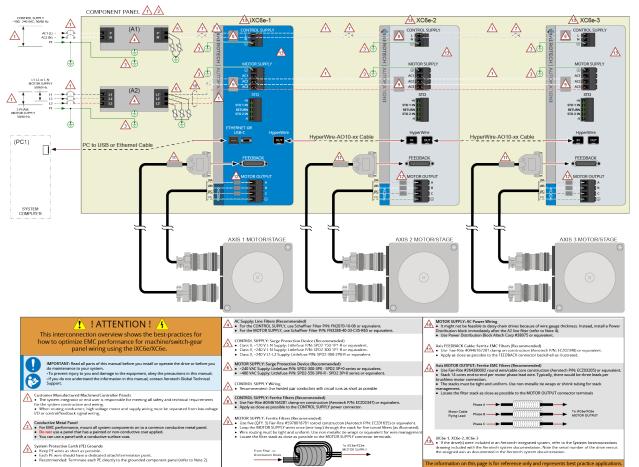
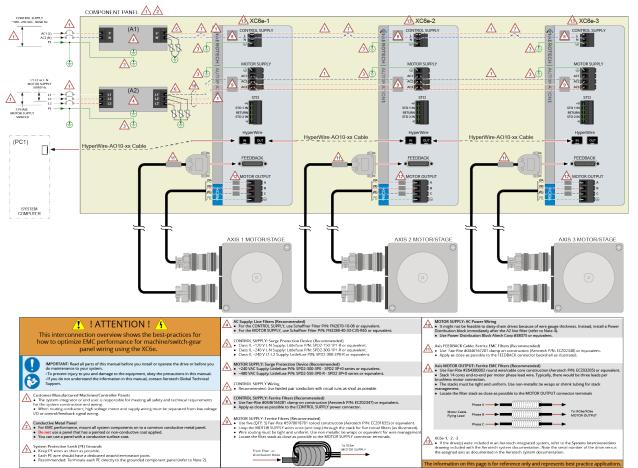
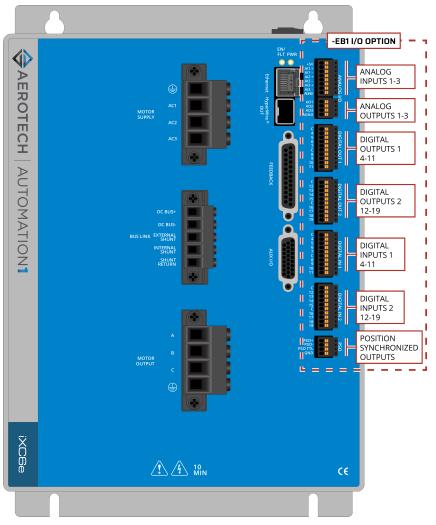



Figure 2-41: Recommended System Connections for a Drive-Based Controller

Figure 2-42: Recommended System Connections for a PC-Based Controller


2.12. PC Configuration and Operation Information

For more information about hardware requirements, PC configuration, programming, system operation, and utilities, refer to the Help file.

This page intentionally left blank.

Chapter 3: -EB1 Option Expansion Board

The -EB1 I/O option board has 16 digital inputs, 16 digital outputs, 3 analog inputs, 3 analog outputs, and PSO outputs.

Figure 3-1: -EB1 I/O Option Board Connectors (iXC6e shown)

3.1. Digital Outputs [-EB1]

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in a port in the same configuration. Refer to Figure 3-3 and Figure 3-4.

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 3-3. To see an example of a current sinking output that has diode suppression, refer to Figure 3-4.

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

Digital Output Specifications	Value
Maximum Voltage	24 V (26 V Maximum)
Maximum Sink/Source Current	250 mA/output
Output Saturation Voltage	0.9 V at maximum current
Output Resistance	3.7 Ω
Rise / Fall Time	250 µs (2K pull up to 24V)
Reset State	Output Off (High Impedance State)

Table 3-1: Digital Output Specifications [-EB1]

Table 3-2: Digital Output 1 Connector Pinout [-EB1]

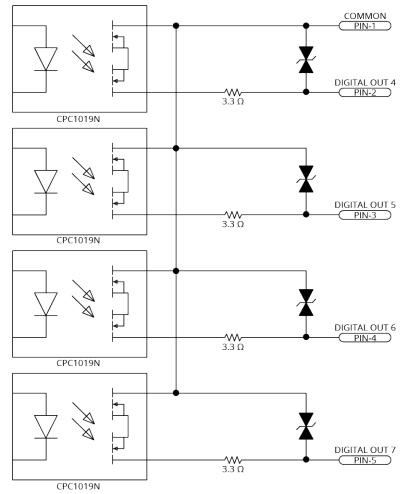
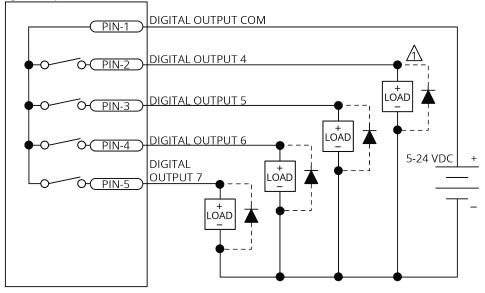
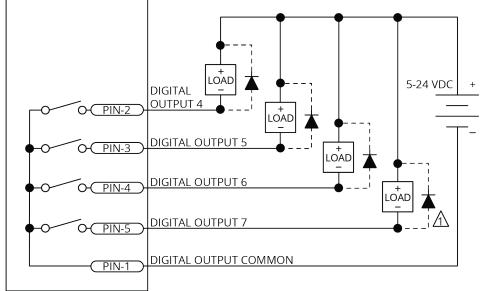

Pin#	Description	In/Out/Bi	Connector
1	Output Common for Outputs 4-7	Output	
2	Output 4 (Optically-Isolated)	Output	C
3	Output 5 (Optically-Isolated)	Output	
4	Output 6 (Optically-Isolated)	Output	6
5	Output 7 (Optically-Isolated)	Output	
6	Output Common for Outputs 8-11	Output	C 📕 🕨
7	Output 8 (Optically-Isolated)	Output	8
8	Output 9 (Optically-Isolated)	Output	9
9	Output 10 (Optically-Isolated)	Output	
10	Output 11 (Optically-Isolated)	Output	

Table 3-3: Digital Output 2 Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	Output Common for Outputs 12-15	Output	
2	Output 12 (Optically-Isolated)	Output	C
3	Output 13 (Optically-Isolated)	Output	12
4	Output 14 (Optically-Isolated)	Output	13 • • • • • • • • • • • • • • • • • • •
5	Output 15 (Optically-Isolated)	Output	15
6	Output Common for Outputs 16-19	Output	C 📕 🕨
7	Output 16 (Optically-Isolated)	Output	
8	Output 17 (Optically-Isolated)	Output	17 • • • 18 • •
9	Output 18 (Optically-Isolated)	Output	19
10	Output 19 (Optically-Isolated)	Output	


Table 3-4: Digital Output 1 and 2 Mating Connector Ratings [-EB1]

Specification		Description	
Туре		10-Pin Terminal Block	
Part Numbers		Aerotech: ECK02395	
		Phoenix: 1700841	
Canduatar	Solid or stranded	2026 AWG (0.140.5 mm ²)	
Conductor Cross Section	Stranded, with ferrule, without plastic sleeve	2024 AWG (0.250.5 mm ²)	
Conductor Insulation Strip Length 8 mm (5/16 in)		8 mm (5/16 in)	
(1) Refer to the manufacturer website for additional information.			


Figure 3-3: Digital Outputs Connected in Current Sourcing Mode [-EB1]

Digital Output Connector [-EB1]

1 DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

3.2. Digital Inputs [-EB1]

Input bits are arranged in groups of 4 and each group shares a common pin. This lets a group be connected to current sourcing or current sinking devices, based on the connection of the common pin in that group.

To be able to connect an input group to current sourcing devices, connect the input group's common pin to the power supply return (-). Refer to Figure 3-6.

To be able to connect an input group to current sinking devices, connect the input group's common pin to the power supply source (+). Refer to Figure 3-7.

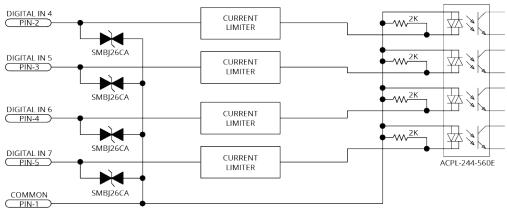
The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.

Table 3-5: Digital Input Specifications [-EB1]

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V to +24 V	6 mA	10 µs	43 µs

Table 3-6: Digital Input 1 Connector Pinout [-EB1]

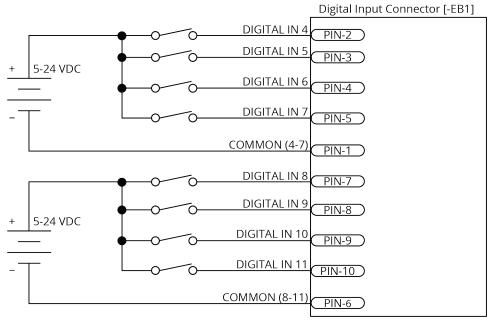
Pin#	Description	In/Out/Bi	Connector
1	Input Common for Inputs 4-7	Output	
2	Input 4 (Optically-Isolated)	Input	C
3	Input 5 (Optically-Isolated)	Input	
4	Input 6 (Optically-Isolated)	Input	6
5	Input 7 (Optically-Isolated)	Input	
6	Input Common for Inputs 8-11	Output	C 📗 🕨
7	Input 8 (Optically-Isolated)	Input	8
8	Input 9 (Optically-Isolated)	Input	9
9	Input 10 (Optically-Isolated)	Input	
10	Input 11 (Optically-Isolated)	Input	

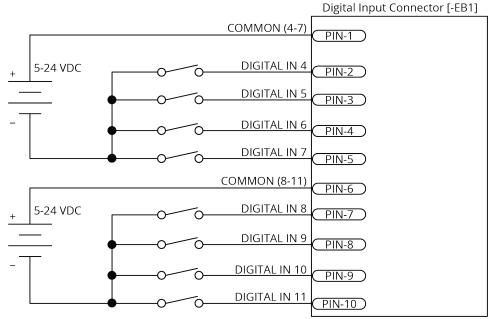

Table 3-7: Digital Input 2 Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	Input Common for Inputs 12-15	Output	
2	Input 12 (Optically-Isolated)	Input	C
3	Input 13 (Optically-Isolated)	Input	
4	Input 14 (Optically-Isolated)	Input	13 • • •
5	Input 15 (Optically-Isolated)	Input	15
6	Input Common for Inputs 16-19	Output	C 📕 🕨
7	Input 16 (Optically-Isolated)	Input	
8	Input 17 (Optically-Isolated)	Input	17 1 7 18 1 8
9	Input 18 (Optically-Isolated)	Input	19
10	Input 19 (Optically-Isolated)	Input	

Table 3-8: Digital Input 1 and 2 Mating Connector Ratings [-EB1]

Specification		Description
Туре		10-Pin Terminal Block
Part Numbers		Aerotech: ECK02395
		Phoenix: 1700841
Conductor	Solid or stranded	2026 AWG (0.140.5 mm ²)
Cross Section	Stranded, with ferrule, without plastic sleeve	2024 AWG (0.250.5 mm ²)
Conductor Insulation Strip Length		8 mm (5/16 in)
(1) Refer to the manufacturer website for additional information.		


Figure 3-5: Digital Inputs Schematic [-EB1]



IMPORTANT: Each bank of four inputs must be connected in an all sourcing or all sinking configuration.

Figure 3-6: Digital Inputs Connected to Current Sourcing (PNP) Devices [-EB1]

Figure 3-7: Digital Inputs Connected to Current Sinking (NPN) Devices [-EB1]

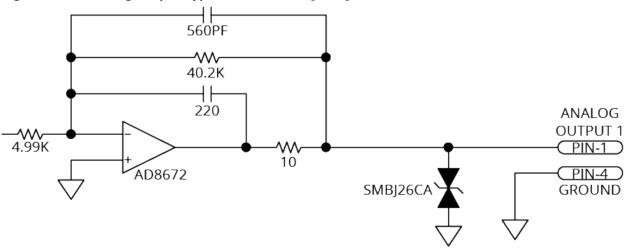
3.3. Analog Outputs [-EB1]

The analog outputs can be set from within a program or they can be configured to echo the state of select servo loop nodes.

The analog outputs are set to zero when you power on the system or reset the drive.

Table 3-9: Analog Output Specifications [-EB1]

Specification	Value
Output Voltage	-10 V to +10 V
Output Current	5 mA
Resolution (bits)	16 bits


Table 3-10: Analog Output Connector Pinout [-EB1]

Pin #	Description	In/Out/Bi	Connector
1	Analog Output 1	Output	
2	Analog Output 2	Output	2
3	Analog Output 3	Output	3
4	Ground	N/A	4

Table 3-11: Analog Output Mating Connector Ratings [-EB1]

Specification		Description	
Туре		4-Pin Terminal Block	
Part Numbers		Aerotech: ECK02399	
		Phoenix: 1768004	
O a radio ata n O a a a a	Solid or stranded	2026 AWG (0.140.5 mm ²)	
Conductor Cross Section	Stranded, with ferrule, without plastic sleeve	2024 AWG (0.250.5 mm ²)	
Conductor Insulation Strip Length		8 mm (5/16 in)	
(1) Refer to the manufacturer website for additional information.		·	

Figure 3-8: Analog Output Typical Connection [-EB1]

3.4. Analog Inputs [-EB1]

To interface to a single-ended, non-differential voltage source, connect the signal common of the source to the negative input and connect the analog source signal to the positive input. A floating signal source must be referenced to the analog common. Refer to Figure 3-9.

 Table 3-12:
 Differential Analog Input Specifications [-EB1]

Specification	Value	
(Al+) - (Al-)	+10 V to -10 V ⁽¹⁾	
Resolution (bits)	16 bits	
Input Impedance 1 MΩ		
1. Signals outside of this range may damage the input		

Table 3-13: Analog Input Connector Pinout [-EB1]

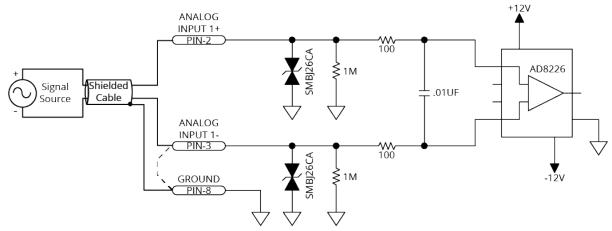

Pin#	Description	In/Out/Bi	Connector
1	+5V (250 mA max)	Output	
2	Analog Input 1+	Input	
3	Analog Input 1-	Input	3
4	Analog Input 2+	Input	4
5	Analog Input 2-	Input	5
6	Analog Input 3+	Input	6
7	Analog Input 3-	Input	7
8	Ground	N/A	

Table 3-14: Analog Input Mating Connector Ratings [-EB1]

Specification		Description
Туре		8-Pin Terminal Block
Part Numbers		Aerotech: ECK02397
		Phoenix: 1908101
Conductor Cross	Solid or stranded	2026 AWG (0.140.5 mm ²)
Section	Stranded, with ferrule, without plastic sleeve	2024 AWG (0.250.5 mm ²)
Conductor Insulation Strip Length		8 mm (5/16 in)
(1) Refer to the manufacturer website for additional information.		•

(1) Refer to the manufacturer website for additional information.

Figure 3-9: Analog Input Typical Connection [-EB1]

3.5. PSO Interface [-EB1]

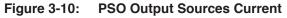
The Position Synchronized Output (PSO) signal is available on the -EB1 option board in two signal formats: TTL and Isolated.

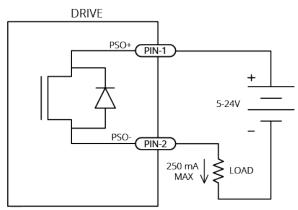
Table 3-15: PSO Specifications [-EB1]

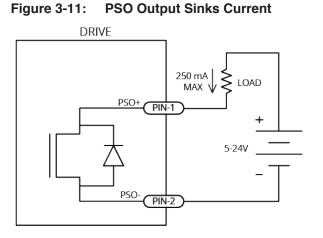
Specification		Value
Output	TTL	5 V, 16 mA (max)
Output	Isolated	5-24 V, 250 mA
Maximum PSO Output (Fire) Frequency	TTL	12.5 MHz
Maximum FSO Output (Fire) Frequency	Isolated	5 MHz
Output Latency	TTL	15 ns
[Fire event to output change]	Isolated	160 ns

Table 3-16: PSO Interface Connector Pinout [-EB1]

Pin #	Description	In/Out/Bi	Connector
1	PSO Output+	Output	
2	PSO Output-	Output	2
3	PSO Output (TTL)	Output	3
4	Ground	N/A	4

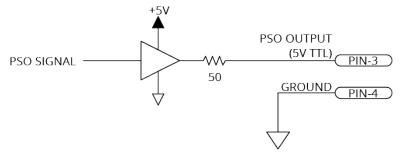

Table 3-17: PSO Interface Mating Connector Ratings [-EB1]


Specification		Description	
Туре		4-Pin Terminal Block	
Part Numbers		Aerotech: ECK02399	
		Phoenix: 1768004	
Conductor Cross Section	Solid or stranded	2026 AWG (0.140.5 mm ²)	
	Stranded, with ferrule, without plastic sleeve	2024 AWG (0.250.5 mm ²)	
Conductor Insulation Strip Length		8 mm (5/16 in)	
(1) Refer to the manufacturer website for additional information.		•	


Isolated Signals

This output signal is a fully-isolated 5-24V compatible output capable of sourcing or sinking current. This output is normally open and only conducts current when a PSO fire event occurs.

The PSO Isolated Outputs are overload protected and will turn off if the maximum output current is exceeded.



PSO Output Sinks Current

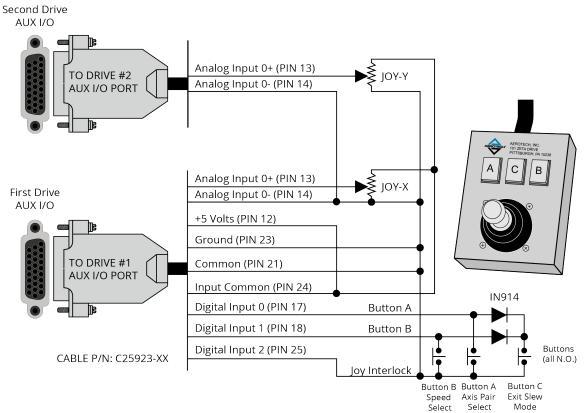
TTL Signals

This output signal is a 5V TTL signal which is used to drive an opto coupler or general purpose TTL input. This signal is active high and is driven to 5V when a PSO fire event occurs.

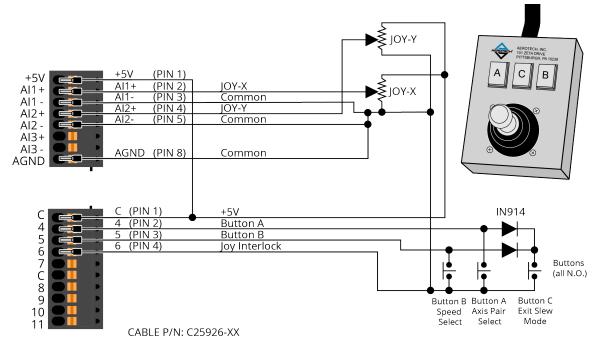
PSO TTL Outputs Schematic Figure 3-12:

Chapter 4: Cables and Accessories

Table 4-1: Standard Interconnection Cables		
Cable Part #	Description	
Joystick	Refer to Section 4.1.	
HyperWire	Refer to Section 2.7.	
ECZ01231	BBA32 Interconnect Cable	
ENET-CAT5e-xx ^(1, 2)	Ethernet CAT5e Cable	
USB-AMCM-xx ^(1, 2, 3)	USB Cable A-Male to C-Male	
(1) The "-xx" indicates length in decimeters.(2) iXC6e Only		
(3) Make sure that you are using a shielded USB-C cable that is designed for data transfer.		


Table 4-1: Standard Interconnection Cables

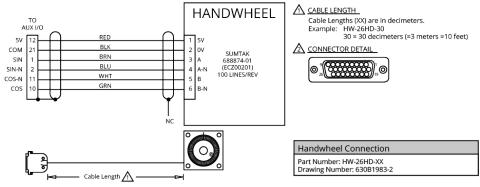
4.1. Joystick Interface

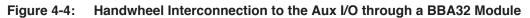

Aerotech Multi-Axis Joystick (NEMA12 (IP54) rated) is powered from 5 V and has a nominal 2.5 V output in the center detent position. Three buttons are used to select axis pairs and speed ranges. An optional interlock signal is used to indicate to the controller that the joystick is present. Joystick control will not activate unless the joystick is in the center location. Third party devices can be used provided they produce a symmetric output voltage within the range of -10 V to +10 V.

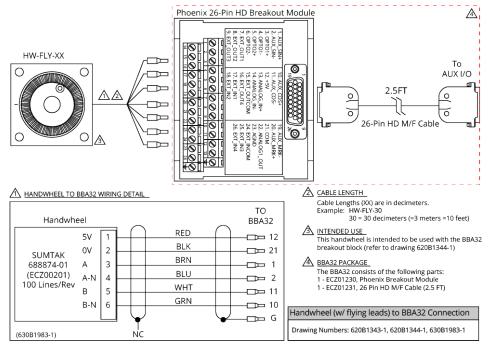
Connecting joystick with an Aerotech cable, all Aerotech cables are labeled to identify the connector and connections. The joystick parameters must be set to match the analog and digital I/O connections. Refer to the Help file for programming information about how to change joystick parameters.

Figure 4-1: Two Axis Joystick Interface (to the Aux I/O of two drives)

4.2. Handwheel Interface


A handwheel can be used to manually control axis position. The handwheel must provide 5V differential quadrature signals to the drive.




IMPORTANT: You can find instructions on how to enable the handwheel in the online Help file.

Connect a handwheel to the Aux I/O as shown in Figure 4-3 or Figure 4-4.

Chapter 5: Maintenance

IMPORTANT: For your own safety and for the safety of the equipment:

- Do not remove the cover of the iXC6e/XC6e.
- Do not attempt to access the internal components.

A fuse that needs to be replaced indicates that there is a more serious problem with the system or setup. Contact Global Technical Support for assistance.

DANGER: If you must remove the covers and access any internal components be aware of the risk of electric shock.

- 1. Disconnect the Mains power connection.
- 2. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.
- 3. All tests must be done by an approved service technician. Voltages inside the controller and at the input and output power connections can kill you.

Table 5-1: LED Description

LED	Color	Description		
PWR	GREEN	The axis is powered on.		
	RED ⁽¹⁾	The light will turn red when power is first applied, a communication problem occurs, or a drive reset is initiated. It will remain red during drive initialization.		
	GREEN	The axis is Enabled.		
	RED	The axis is in a Fault Condition.		
EN/FLT	GREEN/RED (alternates)	The axis is Enabled in a Fault Condition. or The light is configured to blink for setup.		
(1) Red PWR LED functionality is only present on some versions of the drive.				

Table 5-2: Troubleshooting

Symptom	Possible Cause and Solution	
No Communication	Make sure the power LED is illuminated (this indicates that power is present)	
	Make sure that all communication cables (HyperWire, for example) are fully inserted in their ports.	

5.1. Preventative Maintenance

Do an inspection of the iXC6e/XC6e and the external wiring one time each month. It might be necessary to do more frequent inspections based on:

- The operating conditions of the system.
- How you use the system.

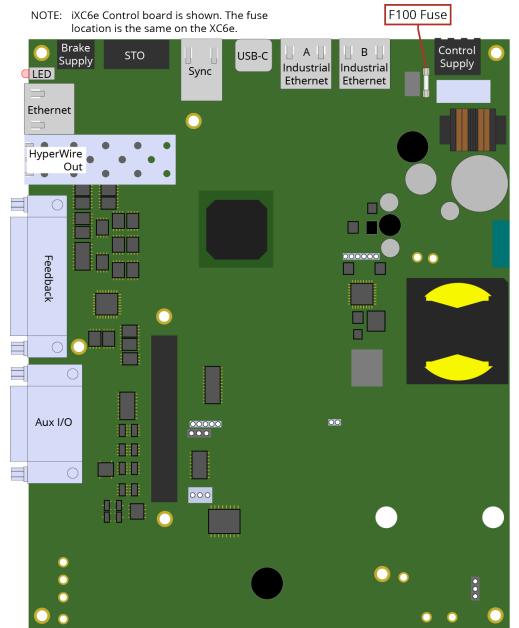
Table 5-3: Preventative Maintenance

Check	Action to be Taken		
Examine the chassis for hardware and parts that are damaged or loose. It is not necessary to do an internal inspection unless you think internal damage occurred.	Repair all damaged parts.		
Do an inspection of the cooling vents.	Remove all material that collected in the vents.		
Examine the work area to make sure there are no fluids and no electrically conductive materials.	Do not let fluids and electrically conductive material go into the chassis.		
Examine all cables and connections to make sure they are correct.	Make sure that all connections are correctly attached and not loose. Replace cables that are worn.		
	Replace all broken connectors.		

Cleaning

DANGER: Before you clean the iXC6e/XC6e, disconnect the electrical power from the drive.

Use a clean, dry, soft cloth to clean the iXC6e/XC6e. If necessary, use a cloth that is moist with water or isopropyl alcohol. If you use a moist cloth, make sure that moisture does not go into the drive. Also make sure that it does not go onto the outer connectors and components. Internal contamination from the cleaning solution can cause corrosion and electrical short circuits.


Do not clean the labels with a cleaning solution because it might remove the label information.

5.2. Fuse Specifications

Table 5-4: Control Board Fuse Specifications

Fuse	Description	Size	SCCR ¹	Aerotech P/N	Third Party P/N		
F100 (2)	Control Power at Line Input (L)	2 A S.B.	35 A	EIF01044	Littelfuse 0877002.MXEP		
(1) Short circuit current rating							
(2) F100 is soldered into the PCB and is not user replaceable.							

Figure 5-1: Fuse Location on the XC6e Control Board

This page intentionally left blank.

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

https://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO Aerotech, Inc. Global Headquarters

TAIWAN Aerotech Taiwan Full-Service Subsidiary CHINA Aerotech China Full-Service Subsidiary

UNITED KINGDOM Aerotech United Kingdom Full-Service Subsidiary **GERMANY** Aerotech Germany Full-Service Subsidiary

Appendix B: Revision History

Revision	Description
2.02	Updated: • Agency Approvals (Agency Approvals) • Feature Summary (Section 1.1.) • Table 5-1 (red power description)
2.01	Update to Section 1.4. Electrical Specifications
2.00	New: • Agency Approvals Updated: • Section 1.4. Electrical Specifications • Section 2.2.1. Brushless Motor Connections • Section 2.4. Safe Torque Off Input (STO)
1.10	
1.09	
1.08	
1.07	
1.06	Devision shanges have been prohived. If you need a convert this revision, contact
	Revision changes have been archived. If you need a copy of this revision, contact AerotechGlobal Technical Support.
1.04	
1.03	
1.02	
1.01	
1.00	

This page intentionally left blank.

-EB1

Analog Inputs	98
Analog Outputs	97
Digital Inputs	94
Digital Outputs	90
I/O Option Board	89
Position Synchronized Output (PSO) Interface	99
-MX2	44
-MX3	44,64

-

> 9 9 9

2

2006/42/EC			
2014/30/EU			
2014/35/EU			

A

Absolute Encoder	
BiSS 43	3,63
EnDat 43	3,63
SSI 43	3,63
Absolute Encoder (Auxiliary I/O Connector)	63
Absolute Encoder (Feedback Connector)	43
Absolute Encoder Schematic (Auxiliary I/O Connector)	63
Absolute Encoder Schematic (Feedback Connector)	43
Absolute Encoder Specifications (Auxiliary I/O Connector)	63
Absolute Encoder Specifications (Feedback Connector)	43
AC line filter	30
Agency Approvals	11
Altitude	28
Analog Encoder (Aux Connector)	64
Analog Encoder (Auxiliary I/O Connector)	44
Analog Encoder Phasing Reference Diagram	64
Analog Encoder Schematic (Auxiliary I/O Connector)	65
Analog Encoder Specifications (Auxiliary I/O Connector)	64
Analog Encoder Specifications (Feedback Connector)	44
Analog Input 0 on the Aux I/O Connector	75
Analog Input 0 Schematic (Aux I/O Connector)	75
Analog Input 0 Specifications (Aux I/O Connector)	75
Analog Input Connector [-EB1] Mating Connector Part Numbers	98

Analog Input Connector Pinout [-EB1]	98
Analog Input Pins (Aux I/O Connector)	75
Analog Input Typical Connection [-EB1]	98
Analog Inputs [-EB1]	98
Analog Output 0 on the Aux I/O Connector	74
Analog Output 0 Schematic (Aux I/O Connector)	74
Analog Output 0 Specifications (Aux I/O Connector)	74
Analog Output Connector [-EB1] Mating Connector Part Numbers	97
Analog Output Connector Pinout [-EB1]	97
Analog Output Pins (Aux I/O Connector)	74
Analog Output Specifications [-EB1]	97
Analog Output Typical Connection [-EB1]	97
Analog Outputs [-EB1]	97
Aux Connector	
Analog Encoder	64
Sine Wave Encoder	64
Aux I/O Connector	
Analog Input 0	75
Analog Output 0	74
Auxiliary Encoder Interface	61
Digital Inputs	71
Digital Outputs	68
High-Speed User Inputs	73
Position Synchronized Output	66
PSO	66
Aux I/O Connector Mating Connector Part Numbers	60
Auxiliary Encoder (Aux I/O Connector)	61
Auxiliary I/O Connector	60
Absolute Encoder	63
Analog Encoder	44
RS-422 Line Driver Encoder	62
Sine Wave Encoder	44
Square Wave Encoder	62
Auxiliary I/O Connector Pinout	60
Auxiliary I/O Pins (Aux I/O Connector)	61

В

3
3
3
3
3

iXC6e/XC6e Hardware Manual

Brake Power Supply Connector	76
Brake Power Supply Connector Mating Connector Part Numbers	76
Brushless Motor Configuration (Motor Power Output Connector)	37
Brushless Motor Connections (Motor Power Output	
Connector)	37
Brushless Motor Phasing Goal	39
Brushless Motor Phasing Oscilloscope Example	39
Brushless Motor Powered Motor Phasing	38
Brushless Motor Unpowered Motor and Feedback Phasing	39
Bus Link Connector	78
Mating Connector Part Numbers	79
Pinout	79

С

Cable Wires		
Brushless Motors	37	
Cables		
HyperWire	77	
Sync Port	83	
Cables and Accessories	101	
cables, examining	106	
Check for fluids or electrically conductive material expo	sure 106	
Cleaning	106	
Commands		
Sync	83	
Conducted and Radiated Emissions	9-10	
Conductors	22	
connections, examining	106	
Control Board Fuse Specifications	107	
Control Supply Connections	29	
Control Supply Connector	29	
Mating Connector Part Numbers	29	
Pinout	29	
Control Supply specifications	22	
cooling vents, inspecting	106	
Customer order number	14	

D

Declaration of Conformity	9-10
Differential Analog Input Specifications [-EB1]	98
Digital Input 1 Connector Pinout [-EB1]	94
Digital Input 2 Connector [-EB1] Mating Connector Part	
Numbers	95

Digital Input 2 Connector Pinout [-EB1]	95
Digital Input Pins on the Aux I/O Connector	71
Digital Input Specifications (Aux I/O Connector)	71
Digital Input Specifications [-EB1]	94
Digital Inputs (Aux I/O Connector)	71
Digital Inputs [-EB1]	94
Digital Inputs Connected to a Current Sinking Device [-EB1]	96
Digital Inputs Connected to a Current Sourcing Device [-EB1]	96
Digital Inputs Connected to Current Sinking Devices (Aux I/O Connector)	72
Digital Inputs Connected to Current Sourcing Devices (Aux I/O Connector)	72
Digital Output 1 Connector [-EB1] Mating Connector Part Numbers	91
Digital Output 1 Connector Pinout [-EB1]	91
Digital Output 2 Connector [-EB1] Mating Connector Part Numbers	91
Digital Output 2 Connector Pinout [-EB1]	91
Digital Output Pins (Aux I/O Connector)	68
Digital Output Schematic (Aux I/O Connector)	69
Digital Output Specifications (Aux I/O Connector)	68
Digital Output Specifications [-EB1]	90
Digital Outputs (Aux I/O Connector)	68
Digital Outputs [-EB1]	90
Digital Outputs Connected in Current Sinking Mode (Aux I/O Connector)	70
Digital Outputs Connected in Current Sinking Mode [-EB1]	93
Digital Outputs Connected in Current Sourcing Mode (Aux I/C Connector)) 70
Digital Outputs Connected in Current Sourcing Mode [-EB1]	93
Digital Outputs Schematic [-EB1]	92
Dimensions	26
Dimensions (without -EB1)	26
Dimensions with -EB1	27
Drawing number	14
Drive and Software Compatibility	28
Drive IP Rating	
IP20	25

Е

Electrical Safety for Power Drive Systems	9-10
Electrical Specifications	22
Control Supply	22
Insulation	22
Minimum Load Inductance	22
Motor Type	22

Power Amplifier Bandwidth 22 **Protective Features** 22 **PWM Switching Frequency** 22 SCCR 22 22 User Power Supply Output 9 Electromagnetic Compatibility (EMC) **EMC/CE** Compliance 32 Enclosure **IP54** Compliant 25 encoder 43,63 absolute Encoder (Feedback Connector) 41 **Encoder and Hall Signal Diagnostics** 38 Encoder Fault Input (Feedback Connector) 49 Encoder Fault Input Pin on the Feedback Connector 49 **Encoder Phasing** 46 **Encoder Phasing Reference Diagram** 46 Encoder Pins on the Feedback Connector 41 End of Travel Limit Input (Feedback Connector) 50 End of Travel Limit Input Connections 51 End of Travel Limit Input Diagnostic Display 52 End of Travel Limit Input Pins on the Feedback Connector 50 End of Travel Limit Phasing 52 EnDat absolute encoder 43,63 28 **Environmental Specifications** EU 2015/863 9 examining parts 106 cables 106 connections 106 examining, dangerous fluids examining, dangerous material 106 Extenral Shunt Connector Pinout 79 External Shunt Connector Mating Connector Part Numbers 79 F Feature Summary 20

40

43

53

41

49

50

Hall-Effect Inputs	47
Home Limit Input	50
Pinout	40
Primary Encoder	41
RS-422 Line Driver Encoder	42
Square Wave Encoder	42
Thermistor Input	48
Travel Limit Input	50
Feedback Monitoring	38
Figure	
-EB1 I/O Option Board Connectors	89
Absolute Encoder Schematic (Auxiliary I/O Connector)	63
Absolute Encoder Schematic (Feedback Connector)	43
Analog Encoder Schematic (Auxiliary I/O Connector)	65
Analog Input 0 Schematic (Aux I/O Connector)	75
Analog Input Typical Connection [-EB1]	98
Analog Output 0 Schematic (Aux I/O Connector)	74
Analog Output Typical Connection [-EB1]	97
Brake Connected to the Feedback Connector	53
Brushless Motor Configuration (Motor Power Output Connector)	37
Control Supply Connections	29
Digital Inputs Connected to a Current Sinking Device [- EB1]	23 96
Digital Inputs Connected to a Current Sourcing Device [- EB1]	96
Digital Inputs Connected to Current Sinking Devices (Aux	
I/O Connector)	72
Digital Inputs Connected to Current Sourcing Devices (Aux I/O Connector)	72
Digital Output Schematic (Aux I/O Connector)	69
Digital Outputs Connected in Current Sinking Mode (Aux I/O Connector)	70
Digital Outputs Connected in Current Sourcing Mode (Au: I/O Connector)	x 70
Digital Outputs Schematic [-EB1]	92
Dimensions (without -EB1)	26
Dimensions with -EB1	27
End of Travel Limit Input Connections	51
End of Travel Limit Input Diagnostic Display	52
Hall-Effect Inputs Schematic	47
High-Speed Inputs	73
Home Limit Input Connections	51
Home Limit Input Diagnostic Display	52
	100
	100

Feedback Connector

Brake Outputs

Encoder

Absolute Encoder

Encoder Fault Input

End of Travel Limit Input

iXC6e/XC6e Hardware Manual

Motor Supply Connections	30
Outputs Connected in Current Sinking Mode [-IO]	93
Outputs Connected in Current Sourcing Mode [-EB1]	93
Positive Motor Direction	38
PSO Isolated Output Sinks Current	100
PSO Isolated Output Sources Current	100
PSO TTL Outputs Schematic	100
Sine Wave Encoder Schematic (Auxiliary I/O Connector	or) 65
Square Wave Encoder Inputs Schematic (Aux I/O Connector)	62
Square Wave Encoder Schematic (Feedback Connect	or) 42
STO Timing	59
Thermistor Input Schematic	48
TTL Outputs Schematic (PSO)	100
Typical STO Configuration	55
fluids, dangerous	106
Functional Diagram	21
Fuse Specifications	107
Control Supply at L	107
External Shunt (-SX1)	107
Motor Supply at AC1	107

н

Hall-Effect Feedback Pins on the Feedback Connector	47
Hall-Effect Inputs (Feedback Connector)	47
Hall-Effect Inputs Schematic	47
Handling	14
Handwheel Interconnection (to Aux I/O through a BBA32 Module)	104
Handwheel Interconnection to the Aux I/O Connector	104
Handwheel Interface	104
High-Speed Input Pins on the Aux I/O Connector	73
High-Speed Input Specifications	73
High-Speed Inputs	73
High-Speed User Inputs (Aux I/O Connector)	73
Home Limit Input (Feedback Connector)	50
Home Limit Input Connections	51
Home Limit Input Diagnostic Display	52
Home Limit Input Pins on the Feedback Connector	50
Humidity	28
HyperWire	77
Cable Part Numbers	77
Card Part Number	77

I	
I/O Option Board [-EB1]	89
Input Power Connections	29
inspecting cooling vents	106
Inspection	106
Installation and Configuration	29
Installation Overview	15
Insulation specifications	22
Internal Shunt Connector	
Mating Connector Part Numbers	79
Pinout	79
Internal Shunt Specifications	79
Introduction	17
IP20 Drive IP Rating	25
IP54 Compliant Enclosure	25
Isolated Output Current Sinks Schematic (PSO)	100
Isolated Output Current Sources Schematic (PSO)	100
J	
Joystick Interface	102
L	
Laser Firing	66
М	
	105
Maintenance	105
material, electrically conductive Mating Connector	106
Analog Output Connector [-EB1]	97
Mating Connector P/N	-
Analog Input Connector [-EB1]	98
Aux I/O Connector	60
Brake Power Supply Connector	76
Bus Link Connector	79
Control Supply Connector	29
Digital Input 2 Connector [-EB1]	95
Digital Output 1 Connector [-EB1]	91
Digital Output 2 Connector [-EB1]	91
External Shunt Connector	79
Feedback Connector	40
Internal Shunt Connector	79
Motor Power Output Connector	36

PSO Connector [-EB1]	99	Brake Output Pins (Feedback Connector)
Shunt Connector	79	Bus Link Connector
STO Connector	54	Control Supply Connector Wiring
Mechanical Specifications	25	Digital Input 1 Connector [-EB1]
Minimizing Conducted, Radiated, and System Noise for		Digital Input 2 Connector [-EB1]
EMC/CE Compliance	32	Digital Input Pins (Aux I/O Connector)
Minimum Load Inductance specifications	22	Digital Output 1 Connector [-EB1]
Motor Connector		Digital Output Pins (Aux I/O Connector)
Mating Connector Part Numbers	40	Encoder (Feedback Connector)
Motor Function Relative to STO Input State	58	Encoder Fault Input Pin (Feedback Connector)
Motor Power Output Connector	36	End of Travel Limit Input Pins (Feedback Connector)
Brushless Motor Connections	37	External Shunt Connector
Mating Connector Part Numbers	36	Feedback Connector
Pinout	36	Hall-Effect Feedback Pins (Feedback Connector)
Motor Supply Connections	30	High-Speed Input Pins (Aux I/O Connector)
Motor Supply Connector	30	Home Limit Input Pins (Feedback Connector)
Pinout	30	Internal Shunt Connector
Wiring Specifications	31	Motor Power Output Connector
Motor Type specification	22	Motor Supply Connector Wiring
Mounting and Cooling	25	Primary Encoder (Feedback Connector)
Mounting Hardware	25	PSO Interface Connector [-EB1]
Mounting Orientation	25	PSO Pins (Aux I/O Connector)
Multi-Axis PSO Tracking	19	Shunt Connector
Multi-Axis PSO Tracking with the Sync Port	83	STO Connector
		Thermistor Input Pin (Feedback Connector)
0		Pollution
Operation	28	Position Feedback in the Diagnostic Display
Overview	17	Position Synchronized Output (Aux I/O Connector)
		Position Synchronized Output (PSO) Interface [-EB1]
Р		Positive Motor Direction
packing list	14	Power Amplifier Bandwidth specification
packing list	14	

PSO

Power Requirements

Preventative Maintenance

Primary Encoder (Feedback Connector)

Protective Features specifications

Sync Port (multi axis tracking)

PSO Interface Connector Pinout [-EB1]

TTL Outputs Schematic

PSO (Aux I/O Connector)

Primary Encoder Pins on the Feedback Connector

Isolated Output Sinks Current Schematic

Isolated Output Sources Current Schematic

PSO Connector [-EB1] Mating Connector Part Numbers

PC Configuration and Operation Information
Phasing
End of Travel Limits
Powered Brushless Motor
Unpowered Brushless Motor/Feedback
Pinout
Analog Input Connector [-EB1]
Analog Input Pins (Aux I/O Connector)
Analog Output Connector [-EB1]
Analog Output Pins (Aux I/O Connector)
Auxiliary I/O Connector
Auxiliary I/O Pins (Aux I/O Connector)
Brake Output Connector

www.aerotech.com	
------------------	--

PSO Output Sources	66
PSO Pins (Aux I/O Connector)	66
PSO Specifications (Aux I/O Connector)	66
PSO Specifications [-EB1]	99
PSO Tracking	
Sync Port	83
PWM Switching Frequency specifications	22

R

Real-Time Clock Requirements	24
Revision History	111
RS-422 Encoder Specifications (Feedback Connector)	42,62
RS-422 Line Driver Encoder	42
RS-422 Line Driver Encoder (Auxiliary I/O Connector)	62

s

Safe Torque Off Input (STO)	54
Safety Procedures and Warnings	12
SCCR	22
serial data stream 4	3,63
serial number	14
shunt	78
Shunt Connector	
Mating Connector Part Numbers	79
Pinout	79
Sine Wave Encoder (Aux Connector)	64
Sine Wave Encoder (Auxiliary I/O Connector)	44
Sine Wave Encoder Phasing Reference Diagram	64
Sine Wave Encoder Schematic (Auxiliary I/O Connector)	65
Sine Wave Encoder Specifications (Auxiliary I/O Connector) 64
Sine Wave Encoder Specifications (Feedback Connector)	44
Specifications	
Absolute Encoder (Auxiliary I/O Connector)	63
Absolute Encoder (Feedback Connector)	43
Analog Encoder (Auxiliary I/O Connector)	64
Analog Encoder (Feedback Connector)	44
Analog Input 0 (Aux I/O Connector)	75
Analog Output 0 (Aux I/O Connector)	74
Analog Outputs [-EB1]	97
Brake Control Relay	53
Control Board Fuses	107
Differential Analog Inputs [-EB1]	98
Digital Inputs (Aux I/O Connector)	71
Digital Inputs [-EB1]	94

Digital Outputs (Aux I/O Connector)	68
Digital Outputs [-EB1]	90
High-Speed Inputs	73
Internal Shunt	79
Motor Supply Connector Wiring	31
PSO (Aux I/O Connector)	66
PSO [-EB1]	99
RS-422 Encoder (Feedback Connector)	42,62
Sine Wave Encoder (Auxiliary I/O Connector)	64
Sine Wave Encoder (Feedback Connector)	44
Square Wave Encoder (Feedback Connector)	42,62
STO Electrical Specifications	55
Unit Weight	25
Square Wave Encoder	42
Square Wave Encoder (Auxiliary I/O Connector)	62
Square Wave Encoder Inputs Schematic (Aux I/O Conn	ector)62
Square Wave Encoder Schematic (Feedback Connector	or) 42
Square Wave Encoder Specifications (Feedback	
Connector)	42,62
SSI absolute encoder	43,63
STO	54
Connector Pinout	54
Diagnostics	59
Electrical Specifications	55
External Delay Timer	57
Functional Description	57
Mating Connector Part Numbers	54
Motor Function Relative to the STO Input State	58
Signal Delay	58
Standards	56
Standards Data	56
Startup Validation Testing	58
Timing	59
Typical Configuration	55
Storage	14
Sync-Related Commands	83
Sync Port	
PSO Tracking	83
Sync Port Cables	83
Sync Ports	83
System part number	14
System Power Requirements	24

т

Table of Contents	3
Temperature	28
Thermistor Input (Feedback Connector)	48
Thermistor Input Pin on the Feedback Connector	48
Thermistor Input Schematic	48
Travel Limit Input (Feedback Connector)	50
TTL Outputs Schematic (PSO)	100
Two Axis Joystick Interface	102
Two Axis Joystick Interface (to the I/O board of two drives)	103
Typical STO Configuration	55

U

Unit Weight	25
Use	28
User Power Supply Output specification	22

W

Warranty and Field Service	109
Wire Colors for Aerotech-Supplied Brushless Motor Cables	37

This page intentionally left blank.