




# Automation1 iHXA4 and HXA4 Hexapod Digital Drives

## HARDWARE MANUAL

Revision 1.01



# GLOBAL TECHNICAL SUPPORT

Go to the [Global Technical Support Portal](#) for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2024-2025, Aerotech, Inc. | All rights reserved.

See the latest version of Aerotech's [Terms of Use](#), [Privacy Policy](#), and [Cookie Policy](#) online at [aerotech.com](#).



## Table of Contents

|                                                          |           |
|----------------------------------------------------------|-----------|
| <b>Automation1 iHXA4 and HXA4 Hexapod Digital Drives</b> | <b>1</b>  |
| Table of Contents                                        | 3         |
| List of Figures                                          | 5         |
| List of Tables                                           | 6         |
| EU Declaration of Conformity                             | 8         |
| UKCA Declaration of Conformity                           | 9         |
| Korean Certification                                     | 10        |
| Agency Approvals                                         | 11        |
| Safety Procedures and Warnings                           | 12        |
| Handling and Storage                                     | 13        |
| Installation Overview                                    | 14        |
| <b>Chapter 1: iHXA4/HXA4 Overview</b>                    | <b>17</b> |
| 1.1. Feature Summary                                     | 19        |
| 1.2. Ordering Options                                    | 19        |
| 1.3. Functional Block Diagram                            | 20        |
| 1.4. Electrical Specifications                           | 21        |
| 1.4.1. System Power Requirements                         | 22        |
| 1.4.2. Real-Time Clock Requirements (iHXA4 Only)         | 22        |
| 1.5. Mechanical Specifications                           | 23        |
| 1.5.1. Mounting and Cooling                              | 23        |
| 1.5.2. Dimensions                                        | 24        |
| 1.6. Environmental Specifications                        | 25        |
| 1.7. Drive and Software Compatibility                    | 25        |
| <b>Chapter 2: Installation and Configuration</b>         | <b>27</b> |
| 2.1. Input Power Connections                             | 27        |
| 2.1.1. Control Supply Connector                          | 27        |
| 2.1.2. Motor Supply Connector                            | 28        |
| 2.1.3. Motor Supply Keying                               | 29        |
| 2.1.4. Minimizing Noise for EMC/CE Compliance            | 31        |
| 2.2. Motor Power Output Connector                        | 32        |
| 2.3. Feedback Connector                                  | 33        |
| 2.4. I/O A and B Connectors                              | 34        |
| 2.4.1. Digital Inputs                                    | 35        |
| 2.4.2. Digital Outputs                                   | 37        |
| 2.4.3. Analog Inputs                                     | 40        |
| 2.5. Auxiliary I/O Connector                             | 41        |
| 2.5.1. Position Synchronized Output (PSO)                | 42        |
| 2.5.2. Analog Output                                     | 43        |
| 2.6. Safe Torque Off Input (STO)                         | 44        |
| 2.6.1. STO Standards                                     | 46        |
| 2.6.2. STO Functional Description                        | 47        |
| 2.6.3. STO Startup Validation Testing                    | 48        |
| 2.6.4. STO Diagnostics                                   | 49        |
| 2.7. HyperWire Interface                                 | 50        |
| 2.8. Maximum Energy Storage                              | 51        |
| 2.9. Industrial Ethernet (iHXA4 Only)                    | 52        |
| 2.10. System Interconnection                             | 53        |
| 2.11. PC Configuration and Operation Information         | 55        |
| <b>Chapter 3: Cables and Accessories</b>                 | <b>57</b> |
| 3.1. Joystick Interface                                  | 58        |
| <b>Chapter 4: Maintenance</b>                            | <b>59</b> |
| 4.1. Preventative Maintenance                            | 60        |
| 4.2. Fuse Specifications                                 | 61        |
| <b>Appendix A: Warranty and Field Service</b>            | <b>63</b> |

|                                     |    |
|-------------------------------------|----|
| <b>Appendix B: Revision History</b> | 65 |
| <b>Index</b>                        | 67 |

## List of Figures

|                                                                                      |    |
|--------------------------------------------------------------------------------------|----|
| Figure 1-1: iHXA4 Digital Drive-Based Controller Labeled .....                       | 17 |
| Figure 1-2: HXA4 Digital Drive Labeled .....                                         | 18 |
| Figure 1-3: Functional Diagram .....                                                 | 20 |
| Figure 1-4: Dimensions .....                                                         | 24 |
| Figure 2-1: Control Supply Connections .....                                         | 27 |
| Figure 2-2: Motor Supply Connections .....                                           | 28 |
| Figure 2-3: Key Star Tool .....                                                      | 29 |
| Figure 2-4: Recommended Keying for DC Motor Supplies .....                           | 30 |
| Figure 2-5: Digital Inputs Schematic .....                                           | 35 |
| Figure 2-6: Digital Inputs Connected to Current Sourcing (PNP) Devices .....         | 36 |
| Figure 2-7: Digital Inputs Connected to Current Sinking (NPN) Devices .....          | 36 |
| Figure 2-8: Digital Output Schematic (Auxiliary I/O Connector) .....                 | 38 |
| Figure 2-9: Digital Outputs Connected in Current Sourcing Mode .....                 | 39 |
| Figure 2-10: Digital Outputs Connected in Current Sinking Mode .....                 | 39 |
| Figure 2-11: Analog Inputs Schematic .....                                           | 40 |
| Figure 2-12: PSO Interface .....                                                     | 42 |
| Figure 2-13: Analog Output Schematic .....                                           | 43 |
| Figure 2-14: Typical STO Configuration .....                                         | 45 |
| Figure 2-15: STO Timing .....                                                        | 49 |
| Figure 2-16: iHXA4 Recommended System Connections for a Drive-Based Controller ..... | 53 |
| Figure 2-17: HXA4 Recommended System Connections for a PC-Based Controller .....     | 54 |
| Figure 3-1: Two Axis Joystick Interface .....                                        | 58 |
| Figure 4-1: Fuse Locations on the iHXA4/HXA4 Control Board .....                     | 61 |

## List of Tables

|                                                                                  |    |
|----------------------------------------------------------------------------------|----|
| Table 1-1: Example Order and Ordering Options .....                              | 19 |
| Table 1-2: Electrical Specifications .....                                       | 21 |
| Table 1-3: Mounting Specifications .....                                         | 23 |
| Table 1-4: Environmental Specifications .....                                    | 25 |
| Table 1-5: Drive and Software Compatibility .....                                | 25 |
| Table 2-1: Control Supply Connector Pinout .....                                 | 27 |
| Table 2-2: Control Supply Mating Connector Ratings .....                         | 27 |
| Table 2-3: Motor Supply Connector Pinout .....                                   | 28 |
| Table 2-4: Motor Supply Mating Connector Ratings .....                           | 28 |
| Table 2-5: Key Part Numbers .....                                                | 29 |
| Table 2-6: Recommended Keying for DC Motor Supplies (Drive Connector) .....      | 29 |
| Table 2-7: Recommended Keying for DC Motor Supplies (DC Supply Cables) .....     | 29 |
| Table 2-8: Motor Power Output Connector Pinout .....                             | 32 |
| Table 2-9: Feedback Mating Connector Ratings .....                               | 32 |
| Table 2-10: Feedback Connector Pinout .....                                      | 33 |
| Table 2-11: Feedback Mating Connector Ratings .....                              | 33 |
| Table 2-12: I/O Connector "A" Pinout .....                                       | 34 |
| Table 2-13: I/O Connector "B" Pinout .....                                       | 34 |
| Table 2-14: Mating Connector Part Numbers for the I/O Connectors .....           | 34 |
| Table 2-15: Digital Input Specifications .....                                   | 35 |
| Table 2-16: Digital Input Pins on the I/O "B" Connector .....                    | 35 |
| Table 2-17: Digital Input Pin on the Auxiliary I/O Connector .....               | 35 |
| Table 2-18: Digital Output Specifications .....                                  | 37 |
| Table 2-19: Digital Output Pins on the I/O "A" Connector .....                   | 37 |
| Table 2-20: Digital Output Pin on the Auxiliary I/O Connector .....              | 37 |
| Table 2-21: Differential Analog Input Specifications .....                       | 40 |
| Table 2-22: I/O Connector "A" Analog Inputs Pinout .....                         | 40 |
| Table 2-23: I/O Connector "B" Analog Inputs Pinout .....                         | 40 |
| Table 2-24: Auxiliary I/O Connector Pinout .....                                 | 41 |
| Table 2-25: PSO Specifications .....                                             | 42 |
| Table 2-26: Auxiliary I/O Connector .....                                        | 42 |
| Table 2-27: Analog Output Specifications .....                                   | 43 |
| Table 2-28: Analog Output Pin on the Auxiliary I/O Connector .....               | 43 |
| Table 2-29: STO Connector Pinout .....                                           | 44 |
| Table 2-30: STO Mating Connector Ratings .....                                   | 44 |
| Table 2-31: STO Electrical Specifications .....                                  | 45 |
| Table 2-32: STO Standards .....                                                  | 46 |
| Table 2-33: STO Standards Data .....                                             | 46 |
| Table 2-34: STO Signal Delay .....                                               | 48 |
| Table 2-35: Motor Function Relative to STO Input State .....                     | 48 |
| Table 2-36: STO Timing .....                                                     | 49 |
| Table 2-37: HyperWire Card Part Number .....                                     | 50 |
| Table 2-38: HyperWire Cable Part Numbers .....                                   | 50 |
| Table 2-39: Maximum Energy that can Safely be Absorbed During Regeneration ..... | 51 |
| Table 3-1: Standard Interconnection Cables .....                                 | 57 |
| Table 4-1: LED Description .....                                                 | 59 |
| Table 4-2: Troubleshooting .....                                                 | 59 |
| Table 4-3: Preventative Maintenance .....                                        | 60 |

|                                                    |    |
|----------------------------------------------------|----|
| Table 4-4: Control Board Fuse Specifications ..... | 61 |
|----------------------------------------------------|----|

**EU Declaration of Conformity**

**Manufacturer** Aerotech, Inc.  
**Address** 101 Zeta Drive  
Pittsburgh, PA 15238-2811  
USA  
**Product** iHXA4/HXA4  
**Model/Types** All



This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

|             |                                           |
|-------------|-------------------------------------------|
| 2014/30/EU  | Electromagnetic Compatibility (EMC)       |
| 2014/35/EU  | Low Voltage Directive                     |
| 2006/42/EC  | Machinery Directive                       |
| EU 2015/863 | Directive, Restricted Substances (RoHS 3) |

and has been designed to be in conformity with the applicable requirements of the following standard(s) when installed and used in accordance with the manufacturer's supplied installation instructions.

|                    |                                           |
|--------------------|-------------------------------------------|
| EN 61800-3:2017    | EMC Requirements for Power Drives         |
| IEC 61800-5-1:2022 | Electrical Safety for Power Drive Systems |
| IEC 61800-5-2:2016 | Functional Safety for Power Drive Systems |
| CISPR 11:2015      | Conducted and Radiated Emissions          |

**Authorized Representative:**

Managing Director  
Aerotech GmbH  
Gustav-Weißenkopf-Str. 18  
90768 Fürth  
Germany

Stephan Schech

Date: 11/14/2025

**Engineer Verifying Compliance:**

Aerotech, Inc.  
101 Zeta Drive  
Pittsburgh, PA  
15238-2811  
USA

Alex Weibel

**UKCA Declaration of Conformity**

**Manufacturer** Aerotech, Inc.  
**Address** 101 Zeta Drive  
Pittsburgh, PA 15238-2811  
USA  
**Product** iHXA4/HXA4  
**Model/Types** All



To which this declaration relates, meets the essential health and safety requirements and is in conformity with the relevant UK Legislation listed below:

Electrical Equipment (Safety) Regulations 2016  
Electromagnetic Compatibility Regulations 2016  
Supply of Machinery (Safety) Regulations 2008  
Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Using the relevant section of the following UK Designated Standards and other normative documents when installed in accordance with the installation instructions supplied by the manufacturer.

|                    |                                           |
|--------------------|-------------------------------------------|
| EN 61800-3:2017    | EMC Requirements for Power Drives         |
| IEC 61800-5-1:2022 | Electrical Safety for Power Drive Systems |
| IEC 61800-5-2:2016 | Functional Safety for Power Drive Systems |
| CISPR 11:2015      | Conducted and Radiated Emissions          |

**Authorized Representative:**

Managing Director  
Aerotech Ltd.  
The Old Brick Kiln  
Ramsdell, Tadley  
Hampshire RG26 5PR  
UK

Date: 11/14/2025

Simon Smith

**Engineer Verifying Compliance:**

Aerotech, Inc.  
101 Zeta Drive  
Pittsburgh, PA  
15238-2811  
USA

Alex Weibel

**Korean Certification****Registration of Broadcasting and Communication Equipments**

It is verified that the foregoing equipment has been registered under the Clause 3, Article 58-2 of the radio Waves Act.

AGENCY  
CERTIFICATION  
PENDING

## Agency Approvals

The iHXA4/HXA4 drives have been tested by the following NRTL(s) and have been certified to the standards that follow:

**Certificate #:** TBD

**Standards:**  
CE Attestation of Conformity,  
Low Voltage Directive2014/35/EU,  
IEC 61800-5-1:2020 (Adjustable speed electrical drive  
power systems - Part 5-1: Safety requirements)

Visit <https://www.tuev-sued.de/product-testing/certificates> to view Aerotech's TÜV SÜD certificates. Type the certificate number listed above in the search bar or type "Aerotech" for a list of all Aerotech certificates.

AGENCY  
CERTIFICATION  
PENDING

## Safety Procedures and Warnings

**IMPORTANT:** This manual tells you how to carefully and correctly use and operate the drive.

- Read all parts of this manual before you install or operate the drive or before you do maintenance to your system.
- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- All specifications and illustrations are for reference only and were complete and accurate as of the release of this manual. To find the newest information about this product, refer to [www.aerotech.com](http://www.aerotech.com).



If you do not understand the information in this manual, contact Aerotech Global Technical Support.

Safety notes and symbols are placed throughout this manual to warn you of the potential risks at the moment of the safety note or if you fail to obey the safety note.



The voltage can cause shock, burn, or death.



You are at risk of physical injury.

You could damage the drive.



A surface can be hot enough to burn you.



Your actions, the temperature of the system, or the condition of the atmosphere that surround the system could start a fire.



Components are sensitive to electrostatic discharge.



Unsecured cables could cause you to:

- trip and fall
- drag the product off of its mounting location
- damage the cable connections.



A blue circle symbol is an action or tip that you should obey. Some examples include:

- General tip
- Read the manual/section
- Wear protective safety equipment (eye protection, ear protection, gloves)
- If applicable, do not lift unassisted



## Handling and Storage

### Unpacking the drive



**IMPORTANT:** All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

Inspect the shipping container for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

Remove the packing list from the shipping container. Make sure that all the items specified on the packing list are contained within the package.

The documentation for the drive is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference. Additional information about the system is provided on the Serial and Power labels that are placed on the chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- Drawing number
- System part number

### Handling



**IMPORTANT:** It is the responsibility of the customer to safely and carefully lift and move the drive.

- Be careful when you move or transport the drive.
- Refer to [Section 1.5. Mechanical Specifications](#) for dimensions and weight specifications.
- Retain the shipping materials for future use.
- Transport or store the drive in its protective packaging.

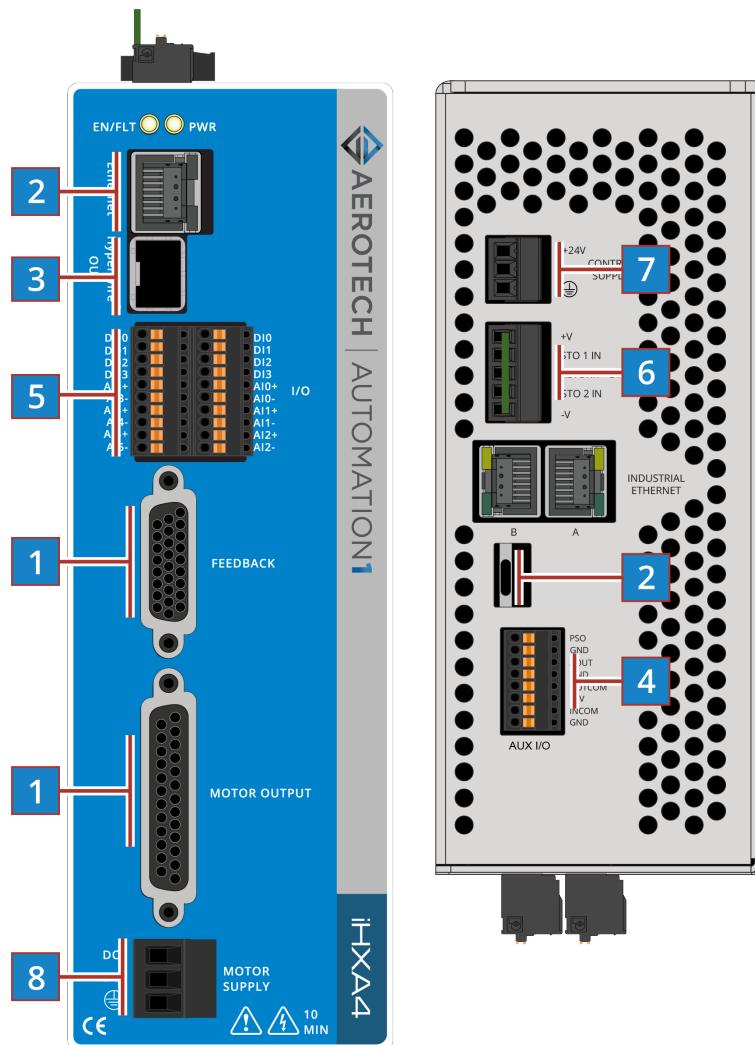


### WARNING: Electrostatic Discharge (ESD) Sensitive Components!

You could damage the power supply or drives if you fail to observe the correct ESD practices.

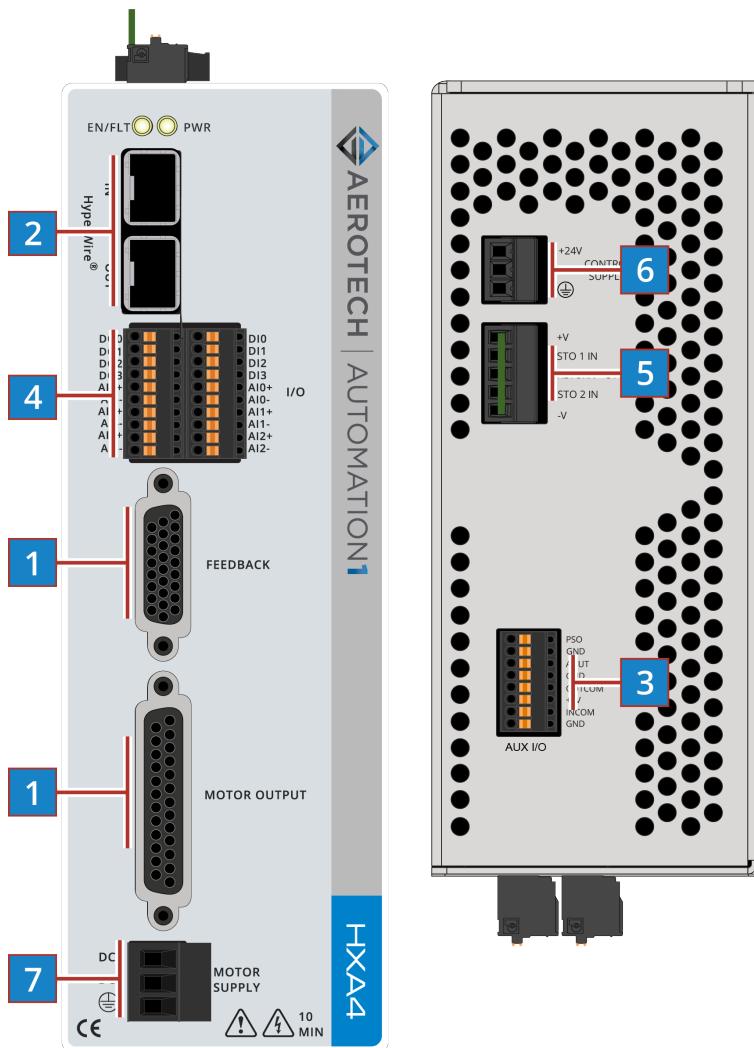
Wear an ESD wrist strap when you handle, install, or do service to the system assembly.

### Storage


Store the drive in the original shipping container. If the original packaging included ESD protective packaging, make sure to store the drive in it. The storage location must be dry, free of dust, free of vibrations, and flat.

Refer to [Section 1.6. Environmental Specifications](#).

## Installation Overview


The images that follow show the order in which to make connections and settings that are typical to the iHXA4/HXA4. If a custom interconnect drawing was supplied with your system, that drawing is on your Storage Device and shows as a line item on your Sales Order in the Integration section.

**Figure 1: Installation Connection Overview for the iHXA4**



|   |                                                                 |                                |
|---|-----------------------------------------------------------------|--------------------------------|
| 1 | Connect the hexapod motor power to the Motor Output connector.  | <a href="#">Section 2.2.</a>   |
|   | Connect the hexapod feedback to the Feedback connector.         | <a href="#">Section 2.3.</a>   |
| 2 | Connect the PC to the USB or Ethernet port.                     | N/A                            |
| 3 | Connect the next drive in the system to the HyperWire Out port. | <a href="#">Section 2.7.</a>   |
| 4 | Connect Auxiliary I/O (PSO/AOUT/DIO COM).                       | <a href="#">Section 2.5.</a>   |
| 5 | Connect Digital and Analog I/O.                                 | <a href="#">Section 2.4.</a>   |
| 6 | Connect the Safe Torque Off (STO).                              | <a href="#">Section 2.6.</a>   |
| 7 | Connect the power supply to the Control Supply connector.       | <a href="#">Section 2.1.1.</a> |
| 8 | Connect the motor power to the Motor Supply connector.          | <a href="#">Section 2.1.2.</a> |

Figure 2: Installation Connection Overview for the HXA4



|   |                                                                                 |                                |
|---|---------------------------------------------------------------------------------|--------------------------------|
| 1 | Connect the hexapod motor power to the Motor Output connector.                  | <a href="#">Section 2.2.</a>   |
|   | Connect the hexapod feedback to the Feedback connector.                         | <a href="#">Section 2.3.</a>   |
| 2 | Connect a PC or drive-based controller HyperWire port to the HyperWire In port. | <a href="#">Section 2.7.</a>   |
| 3 | Connect Auxiliary I/O (PSO/AOUT/DIO COM).                                       | <a href="#">Section 2.5.</a>   |
| 4 | Connect Digital and Analog I/O.                                                 | <a href="#">Section 2.4.</a>   |
| 5 | Connect the Safe Torque Off (STO).                                              | <a href="#">Section 2.6.</a>   |
| 6 | Connect the power supply to the Control Supply connector.                       | <a href="#">Section 2.1.1.</a> |
| 7 | Connect the motor power to the Motor Supply connector.                          | <a href="#">Section 2.1.2.</a> |

*This page intentionally left blank.*

## Chapter 1: iHXA4/HXA4 Overview

The iHXA4 is a digital drive-based controller. It runs the Automation1-iSMC controller to generate commands for itself as well as for additional drives on the chain.

The HXA4 is a digital drive. The HXA4 is based on the HyperWire communication protocol and receives commands from a PC or drive-based controller.

Both drives provide deterministic behavior, auto-identification, and are fully software configurable. A double precision floating point DSP controls the digital PID and current loops. Both drives offer standard Safe Torque Off (STO) inputs, a Position Synchronized Output (PSO) output, user-configurable digital and analog I/O, and separate power connections for motor and control supply voltages.

**Figure 1-1: iHXA4 Digital Drive-Based Controller Labeled**

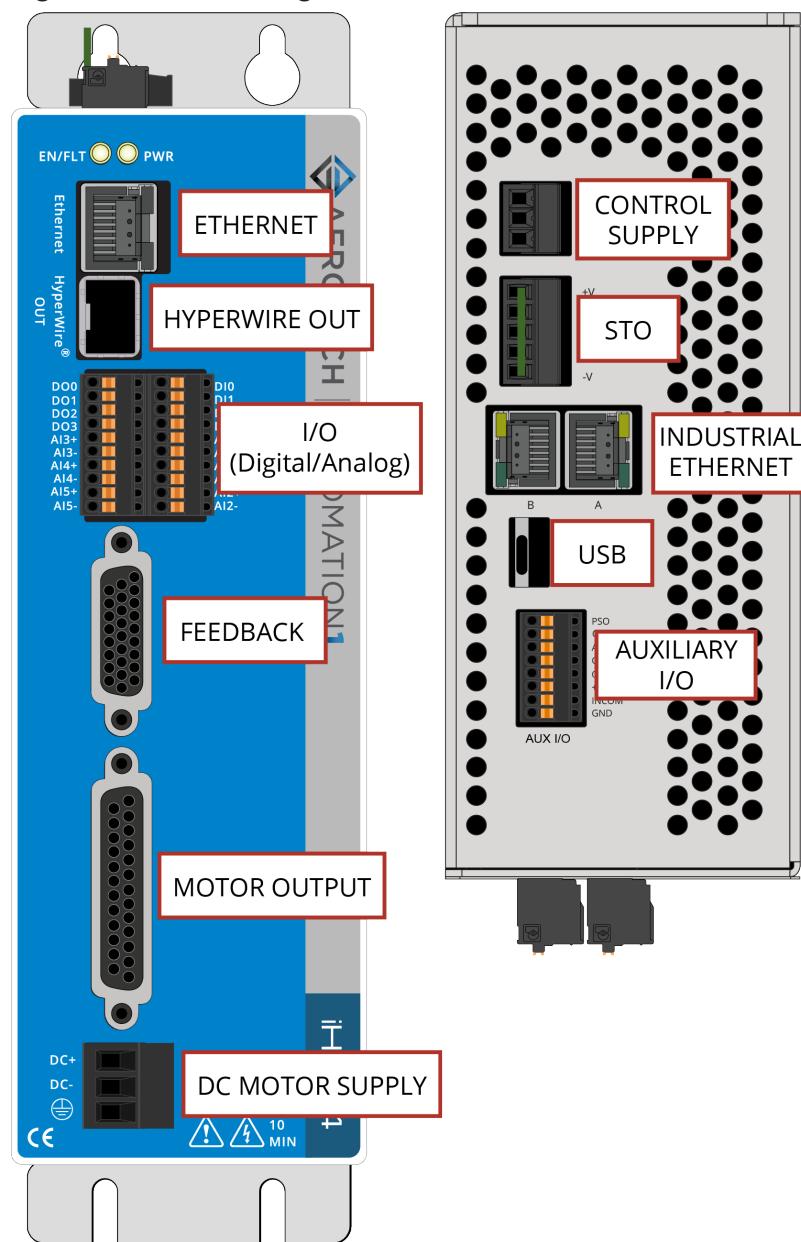
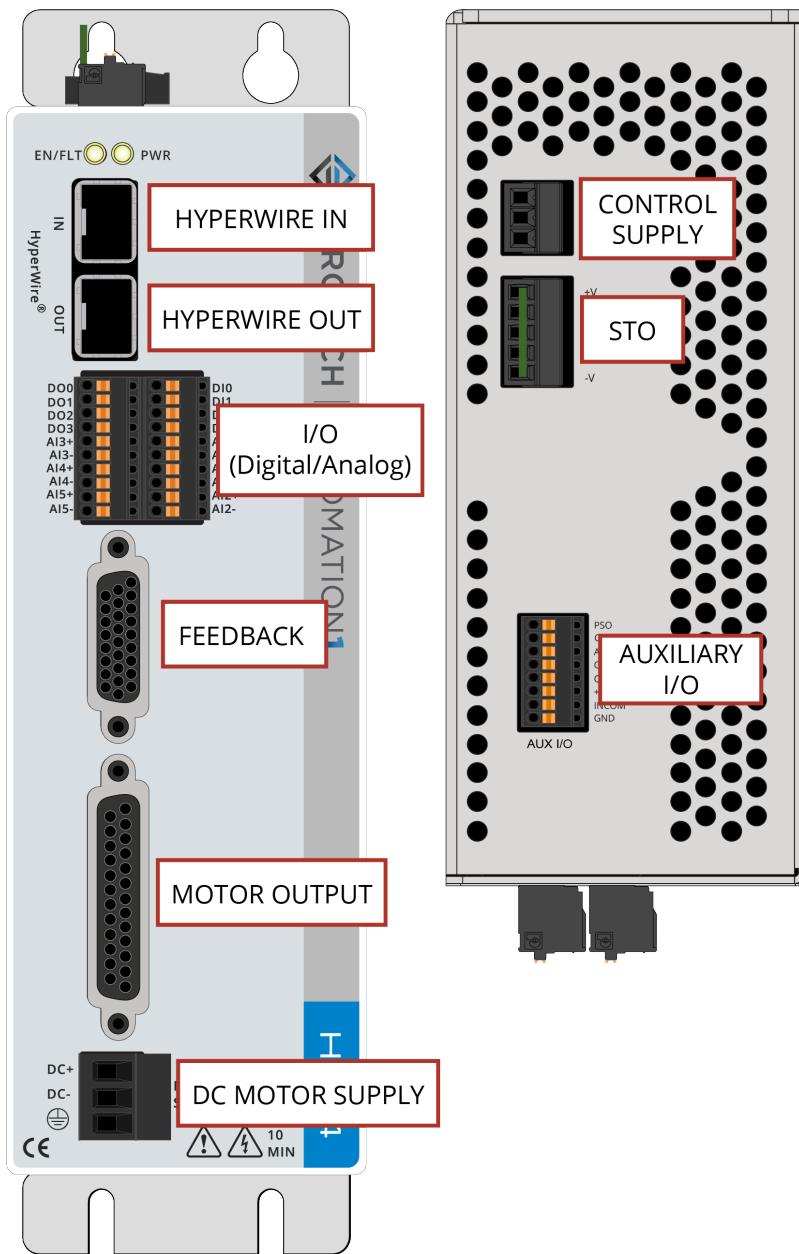



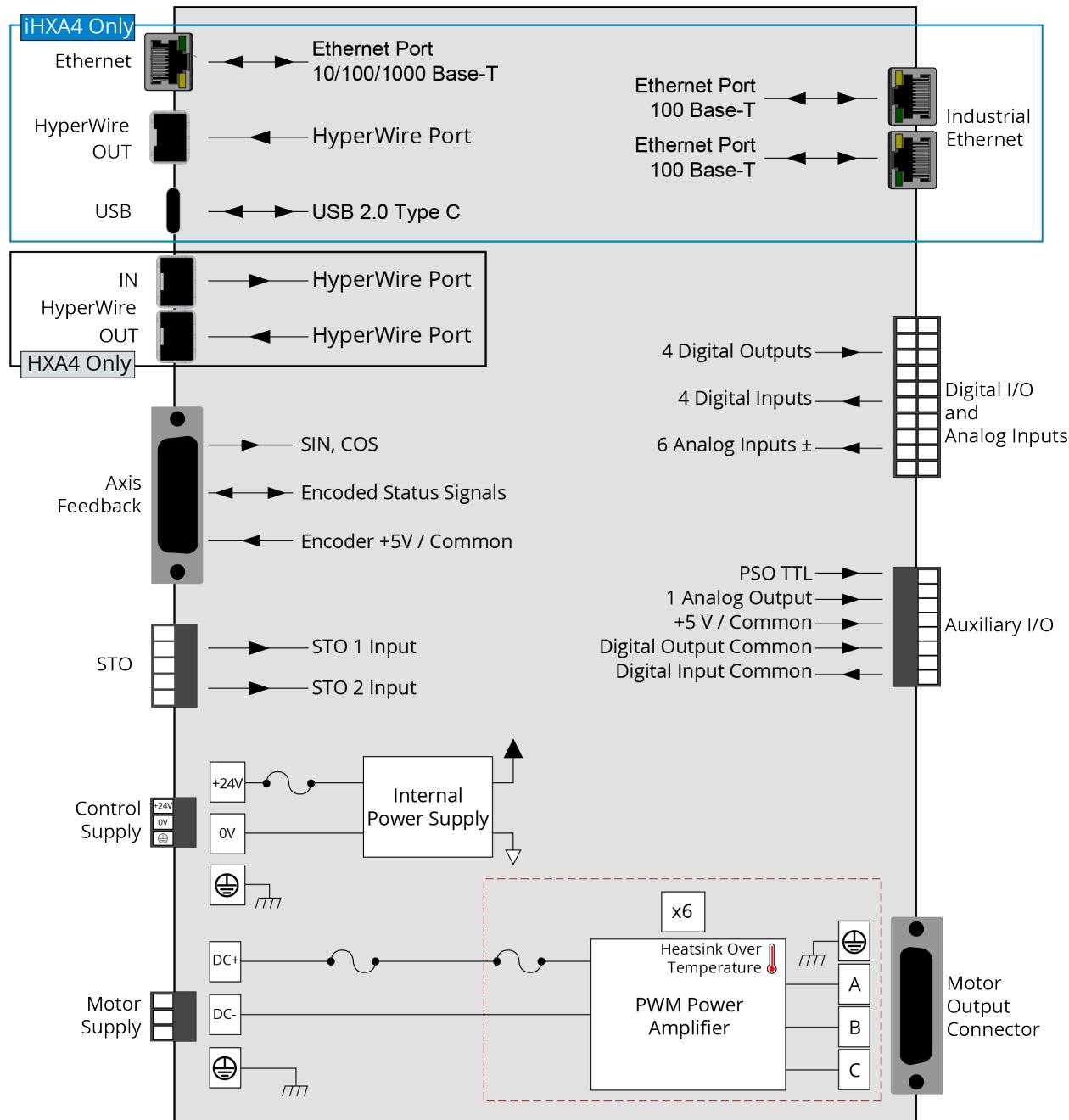

Figure 1-2: HXA4 Digital Drive Labeled



## 1.1. Feature Summary

- 24 VDC control supply input ([Section 2.1.1.](#))
- 10 kHz Servo Loop Update Rate
- Sine wave quadrature encoder input for position and velocity feedback ([Section 2.3.](#))
- Absolute Encoder support on the Feedback connector ([Section 2.3.](#))
- Two STO sense inputs ([Section 2.6.](#))
- Outputs
  - Four optically-isolated digital outputs (5V - 24 V)
  - One 16-bit single-ended analog output ( $\pm 10$  V)
- Inputs
  - Four optically-isolated digital inputs (5V - 24 V)
  - Six 16-bit differential analog inputs ( $\pm 10$  V)
- Position Synchronized Output (PSO):
  - Part-Speed PSO Firing:
    - One to three axes
    - Part-Speed PSO commands high-speed, low-latency output pulses based on the commanded vector velocity. Refer to the [Part-Speed PSO Functions](#) in Automation1 Help.
- One HyperWire communication channel ([Section 2.7.](#))
- One 10/100/1000 BASE-T Ethernet Port (**iHXA4 Only**)
- One USB 2.0 Type C™ Port (**iHXA4 Only**)
- Two 100 BASE-T Industrial Ethernet Ports (**iHXA4 Only**)

## 1.2. Ordering Options


Table 1-1: Example Order and Ordering Options

| Options |                                        |
|---------|----------------------------------------|
| iHXA4   | PWM Servo Drive with Motion Controller |
| HXA4    | PWM Servo Drive                        |

### 1.3. Functional Block Diagram

The block diagram that follows shows a summary of the connector signals.

**Figure 1-3: Functional Diagram**



## 1.4. Electrical Specifications

Table 1-2: Electrical Specifications

| Description                                                                  |                    | Specification                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Supply                                                               | Input Voltage      | 24 VDC                                                                                                                                                                                                                                                                                                                               |
|                                                                              | Input Current      | 5 A maximum, 0.5 A typical                                                                                                                                                                                                                                                                                                           |
| Power Amplifier Bandwidth                                                    |                    | 2500 Hz maximum (software selectable)                                                                                                                                                                                                                                                                                                |
| PWM Switching Frequency                                                      |                    | 20 kHz                                                                                                                                                                                                                                                                                                                               |
| Minimum Load Inductance                                                      |                    | 0.5 mH                                                                                                                                                                                                                                                                                                                               |
| User Power Supply Output                                                     |                    | 5 VDC (@ 500 mA)                                                                                                                                                                                                                                                                                                                     |
| Motor Type                                                                   |                    | Aerotech Brushless Hexapod Motors                                                                                                                                                                                                                                                                                                    |
| Protective Features                                                          |                    | <ul style="list-style-type: none"> <li>• Output short circuit</li> <li>• Peak over current</li> <li>• DC bus over voltage</li> <li>• Motor RMS over current</li> </ul> <ul style="list-style-type: none"> <li>• Motor over temperature</li> <li>• Heatsink over temperature</li> <li>• Control power supply under voltage</li> </ul> |
| Insulation                                                                   |                    | Over Voltage Category 2                                                                                                                                                                                                                                                                                                              |
| Conductors                                                                   |                    | Copper Only, 75°C min                                                                                                                                                                                                                                                                                                                |
| Motor Supply Input Current at full output power                              |                    | 5 A                                                                                                                                                                                                                                                                                                                                  |
| Motor Supply Input Voltage Max <sup>(1)</sup>                                |                    | 100 VDC                                                                                                                                                                                                                                                                                                                              |
| Output Current (peak) <sup>(2,5)</sup>                                       |                    | 10 A                                                                                                                                                                                                                                                                                                                                 |
| Output Current (continuous, all axes together, each axis) <sup>(2,3,4)</sup> |                    | 3 A                                                                                                                                                                                                                                                                                                                                  |
| Internal Time-Delay<br>Fuse                                                  | Motor Supply Input | 10 A                                                                                                                                                                                                                                                                                                                                 |
|                                                                              | per Axis           | 3 A                                                                                                                                                                                                                                                                                                                                  |
| Peak Output Voltage <sup>(3)</sup>                                           |                    | 100 VDC                                                                                                                                                                                                                                                                                                                              |
| Internal Motor Supply Capacitance                                            |                    | 223 µF                                                                                                                                                                                                                                                                                                                               |
| Capacitor Safe Discharge Time (to 50V)                                       |                    | 10 minutes                                                                                                                                                                                                                                                                                                                           |

(1) A lower motor supply voltage can be used. This will result in a reduction of output power.

(2) There are three motor phases per-axis from the drive.

(3) DC input voltage and load dependent.

(4) The maximum total power output is 800 W.

(5) The drive can achieve the peak output current for each axis with all axes running.

### 1.4.1. System Power Requirements

The following equations can be used to determine total system power requirements. The actual power required from the mains supply will be the combination of actual motor power (work), motor resistance losses, and efficiency losses in the power electronics or power transformer. For 3-phase brushless motors:

Use an EfficiencyFactor of approximately 90% in the following equations.

#### PWM Amplifier Types

Power Output [W] = Torque [N·m] · Angular Velocity [rad/sec] ;Rotary  
                           = Force [N] · Linear Velocity [m/sec] ;Linear  
                           =  $B_{emf}$  [V<sub>rms</sub>] · MotorCurrent [A<sub>rms</sub>] · 3 ;Rotary or Linear  
  Power Loss [W] = MotorCurrent<sup>2</sup> [A<sub>rms</sub><sup>2</sup>] · MotorHotResistance [Ω] · 3/2  
  Power Input [W] = (Power Output [W] + Power Loss [W]) / EfficiencyFactor

#### NOTES

l-n = line to neutral

l-l = line to line

V<sub>rms</sub> = Volt rms

A<sub>rms</sub> = Ampere rms

A<sub>pk</sub> = Ampere peak

V<sub>dc</sub> = Volt DC

### 1.4.2. Real-Time Clock Requirements (iHXA4 Only)

The drive has an internal real-time clock that is used to time-stamp logged data. The clock is powered by an internal capacitor when the control supply is not connected to the drive. When the capacitor is fully charged, it will power the clock for 17.5 days.

If the capacitor is fully discharged, the time on the drive is not reliable. To reinitialize the real-time clock, you must:

- Connect the drive to the control supply. It will take 36 minutes to fully charge the capacitor.
- Connect the drive to the Automation1 Studio and reprogram the real-time clock.

The capacitor charges exponentially with a 7.2 minute time constant. Apply the control supply to charge the capacitor. To achieve the maximum 17.5 days of real-time clock operation in the absence of the control supply, the capacitor must be charged for 36 minutes. If the capacitor is not fully charged when the control supply is lost, the real-time clock will not last the entire 17.5 days on backup capacitor power.

## 1.5. Mechanical Specifications

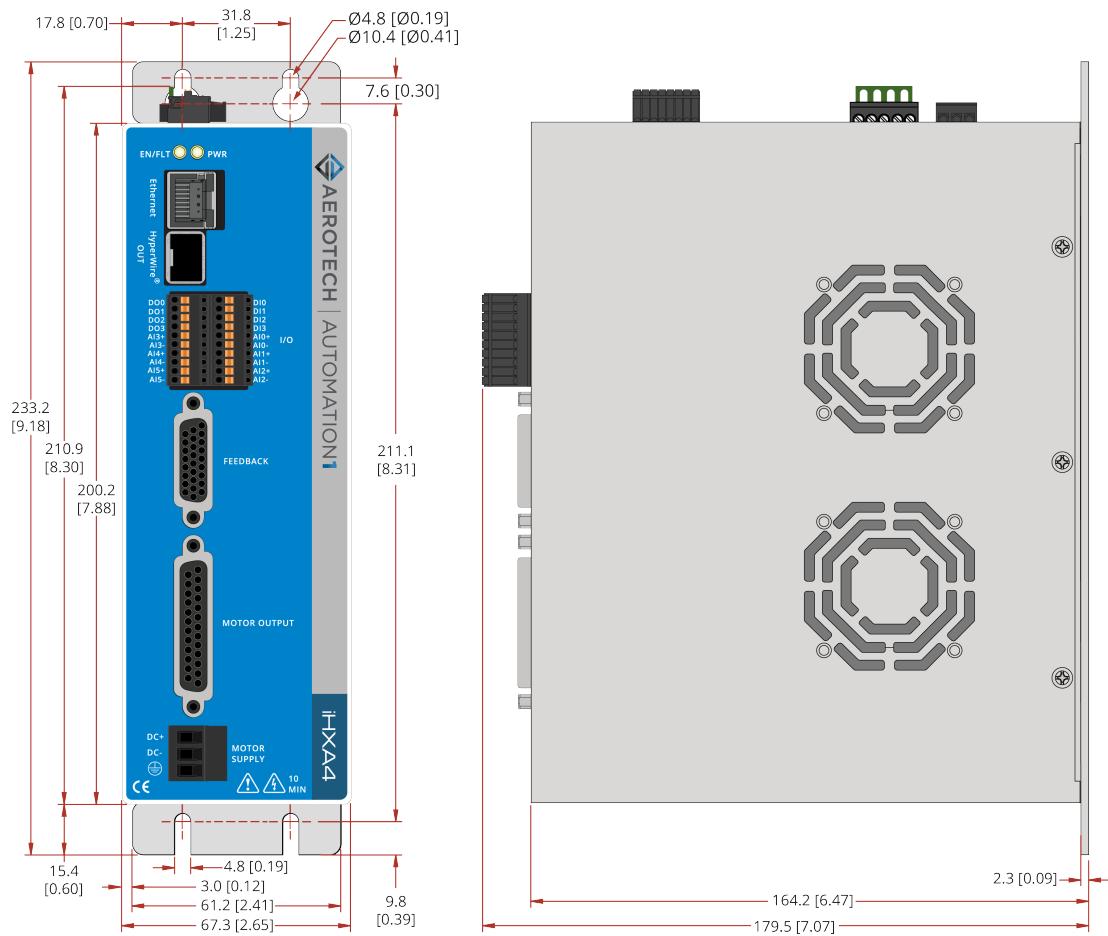
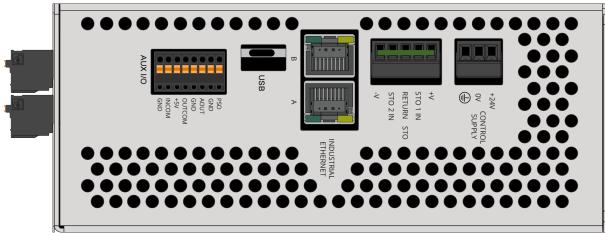
### 1.5.1. Mounting and Cooling

The drive must be installed in an enclosed control cabinet suitable for installation of power equipment. A minimum enclosure rating of IP54 is required to comply with safety standards. Make sure that there is sufficient clearance surrounding the drive for free airflow and for the routing of cables and connections. Consideration for items such as line reactors, line filters, and motor chokes or inductance should be made during the initial cabinet design phase.



**IMPORTANT:** The amount of airflow required to keep the drive temperature within a sufficient range is dependent on the operating conditions. You could be required to supply additional airflow to the drive.

**Table 1-3: Mounting Specifications**



|                                        |            | iHXA4/HXA4                                                         |
|----------------------------------------|------------|--------------------------------------------------------------------|
| Customer-Supplied Enclosure            |            | IP54 Compliant                                                     |
| Weight                                 |            | 0.8 kg                                                             |
| Mounting Hardware                      |            | M4 [#8] screws (four locations, not included)                      |
| Mounting Orientation                   |            | Vertical (typical)                                                 |
| Dimensions                             |            | Refer to <a href="#">Section 1.5.2. Dimensions</a>                 |
| Minimum Clearance                      | Airflow    | ~25 mm                                                             |
|                                        | Connectors | ~100 mm                                                            |
| Operating Temperature                  |            | Refer to <a href="#">Section 1.6. Environmental Specifications</a> |
| Drive IP Rating                        |            | IP20                                                               |
| Mounting Panel Thickness (Recommended) |            | 2.5 - 3.5 mm (.10 - .125 in)                                       |

## 1.5.2. Dimensions



**IMPORTANT:** iHXA4 and HXA4 dimensions are the same. iHXA4 is shown.

**Figure 1-4: Dimensions**



AUTOMATION1-iHXA4  
REC. MTG. HDWR: M4 [#8]

## 1.6. Environmental Specifications

The environmental specifications are listed below.

**Table 1-4: Environmental Specifications**

|                                          |                                                                                                                                          |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Temperature</b>                       | Operating: 0 °C to 40 °C (32 °F to 104 °F)<br>Maximum Surrounding Air: 40 °C (104 °F)<br>Storage: -30 °C to 85 °C (-22 °C to 185 °F)     |
| <b>Humidity</b><br><b>Non-condensing</b> | The maximum relative humidity is 80% for temperatures that are less than 31 °C and decreases linearly to 50% relative humidity at 40 °C. |
| <b>Operating Altitude</b>                | 0 m to 2,000 m (0 ft to 6,562 ft) above sea level.                                                                                       |
| <b>Pollution</b>                         | Pollution Degree 2<br>Typically only nonconductive pollution occurs.                                                                     |
| <b>Operation</b>                         | Use only indoors                                                                                                                         |

## 1.7. Drive and Software Compatibility

This table shows the available drives and which version of the software first supported each drive. In the **Last Software Version** column, drives that show a specific version number are not supported after that version.

**Table 1-5: Drive and Software Compatibility**

| Drive Type | First Software Version | Last Software Version |
|------------|------------------------|-----------------------|
| HXA4       | 2.11.1                 | Current               |
| iHXA4      | 2.11.1                 | Current               |

*This page intentionally left blank.*

## Chapter 2: Installation and Configuration

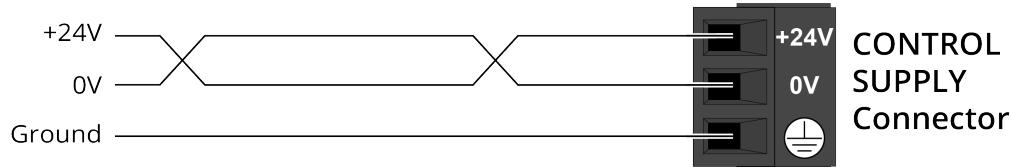
The sections in this chapter include details on how to set up the electrical and safety components of your system. Obey all safety warnings, including those in [Safety Procedures and Warnings \(Page 12\)](#).

### 2.1. Input Power Connections

The drive has two DC input power connectors. One connector is for control power and the other connector is for motor power. For a full list of electrical specifications, refer to [Section 1.4](#). For system interconnection drawings, refer to [Figure 2-16](#) and [Figure 2-17](#) in [Section 2.10](#).

#### 2.1.1. Control Supply Connector




##### DANGER: Shock and Fire Hazard

Electrical wiring must be designed and installed in accordance with local electrical safety regulations to prevent the risk of fire and electrical shock.

The Control Supply input supplies power to the communications and logic circuitry of the drive. The **+24V** input is connected to an internal fuse. Refer to [Table 4-4](#) for the internal fuse value and part number. For an isolated DC supply, connect **0V** to protective ground at the supply. Use twisted pair wiring to minimize radiated noise emissions (refer to [Figure 2-1](#)).

Use a control power supply that is dedicated only to the iHXA4/HXA4 drives to minimize noise. Do not use this supply to power other system components. Locate the power supply close to the drives.

**Figure 2-1: Control Supply Connections**



**Table 2-1: Control Supply Connector Pinout**

| Pin   | Description                                                               |
|-------|---------------------------------------------------------------------------|
| +24 V | 24 VDC ( $\pm 10\%$ ) Control Power Input<br>(5 A maximum, 0.5 A typical) |
| 0 V   | Control Power Common Input                                                |
|       | Protective Ground                                                         |

**Table 2-2: Control Supply Mating Connector Ratings**

| Specification                     | Description                                                                     |                                            |
|-----------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|
| Type                              | 3-Pin Terminal Block                                                            |                                            |
| Part Numbers                      | Aerotech: ECK02456<br>Phoenix: 1839610                                          |                                            |
| Conductor Cross Section           | One conductor, stranded with ferrule and plastic sleeve                         | 18...22 AWG ( $0.25...0.75 \text{ mm}^2$ ) |
|                                   | Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve | 20 AWG ( $0.5 \text{ mm}^2$ )              |
| Tightening Torque                 | 0.22...0.25 N·m                                                                 |                                            |
| Conductor Insulation Strip Length | 7 mm (0.25 in)                                                                  |                                            |

(1) Refer to the manufacturer website for additional information.

## 2.1.2. Motor Supply Connector



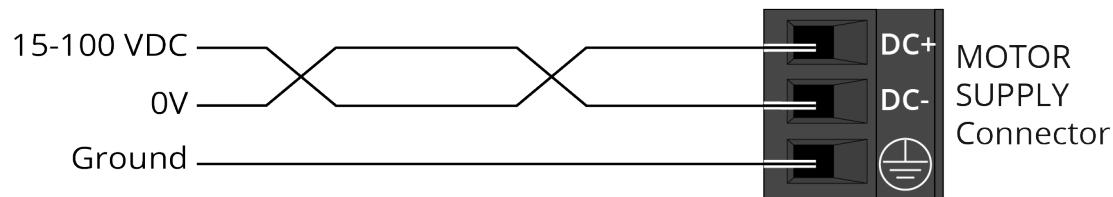
### DANGER: Shock and Fire Hazard!

Electrical wiring must be designed and installed in accordance with local electrical safety regulations to prevent the risk of fire and electrical shock.

If you have a combination of Aerotech drives with AC and DC motor supplies that use the same connector, Aerotech recommends that you key the Motor Supply connectors and mating cables. Refer to [Section 2.1.3. Motor Supply Keying](#) for more information.

Motor power is applied to the **DC+** and **DC-** terminals of the Motor Supply connector.

The **DC+** input is internally connected to a 5 A fuse.


Use twisted pair wiring to minimize radiated noise emissions (refer to [Section 2.1.4.](#)). For inrush limiting, you must power up control and motor supply simultaneously.

Refer to [Section 4.2.](#) for the internal fuse part numbers.



**WARNING:** Verify that all ground connections are installed correctly before you apply power to the iHXA4/HXA4.

**Figure 2-2: Motor Supply Connections**



**Table 2-3: Motor Supply Connector Pinout**

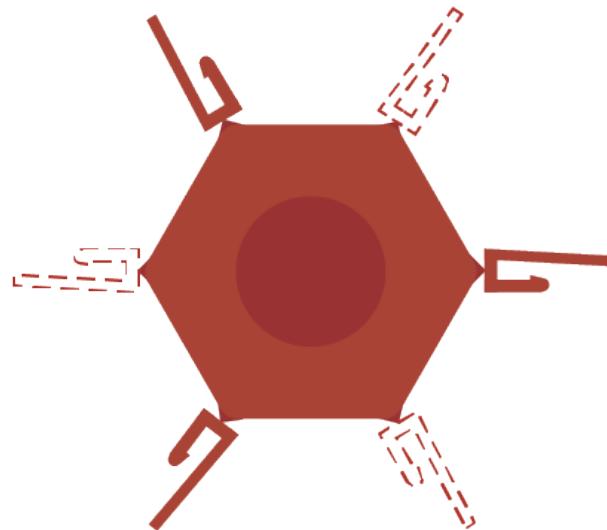
| Pin | Description                                                                      |
|-----|----------------------------------------------------------------------------------|
| DC+ | Motor Power Input (15-100 VDC)                                                   |
| DC- | Motor Power Input Common                                                         |
|     | Protective Earthing Conductor - 0.75 mm <sup>2</sup> / 18 AWG min conductor size |

**Table 2-4: Motor Supply Mating Connector Ratings**

| Specification                     | Description                                                                     |                                           |
|-----------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|
| Type                              | 3-Pin Terminal Block                                                            |                                           |
| Part Numbers                      | Aerotech: ECK02388<br>Phoenix: 1756272                                          |                                           |
| Conductor Cross Section           | One conductor, stranded with ferrule and plastic sleeve                         | 14...22 AWG (0.25...2.5 mm <sup>2</sup> ) |
|                                   | Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve | 16...20 AWG (0.5...1.5 mm <sup>2</sup> )  |
| Tightening Torque                 | 0.5...0.6 N·m                                                                   |                                           |
| Conductor Insulation Strip Length | 7 mm (0.25 in)                                                                  |                                           |

(1) Refer to the manufacturer website for additional information.

Use these parameters to configure motor overload protection: [AverageCurrentThreshold](#), [AverageCurrentTime](#), and [MaxCurrentClamp](#).


### 2.1.3. Motor Supply Keying

If you have a combination of Aerotech drives with AC and DC motor supplies that use the same connector, Aerotech recommends that you key the Motor Supply Connectors and mating cable connectors. You must use keys on both the drive and any mating cable connectors in order for the keys to be effective.



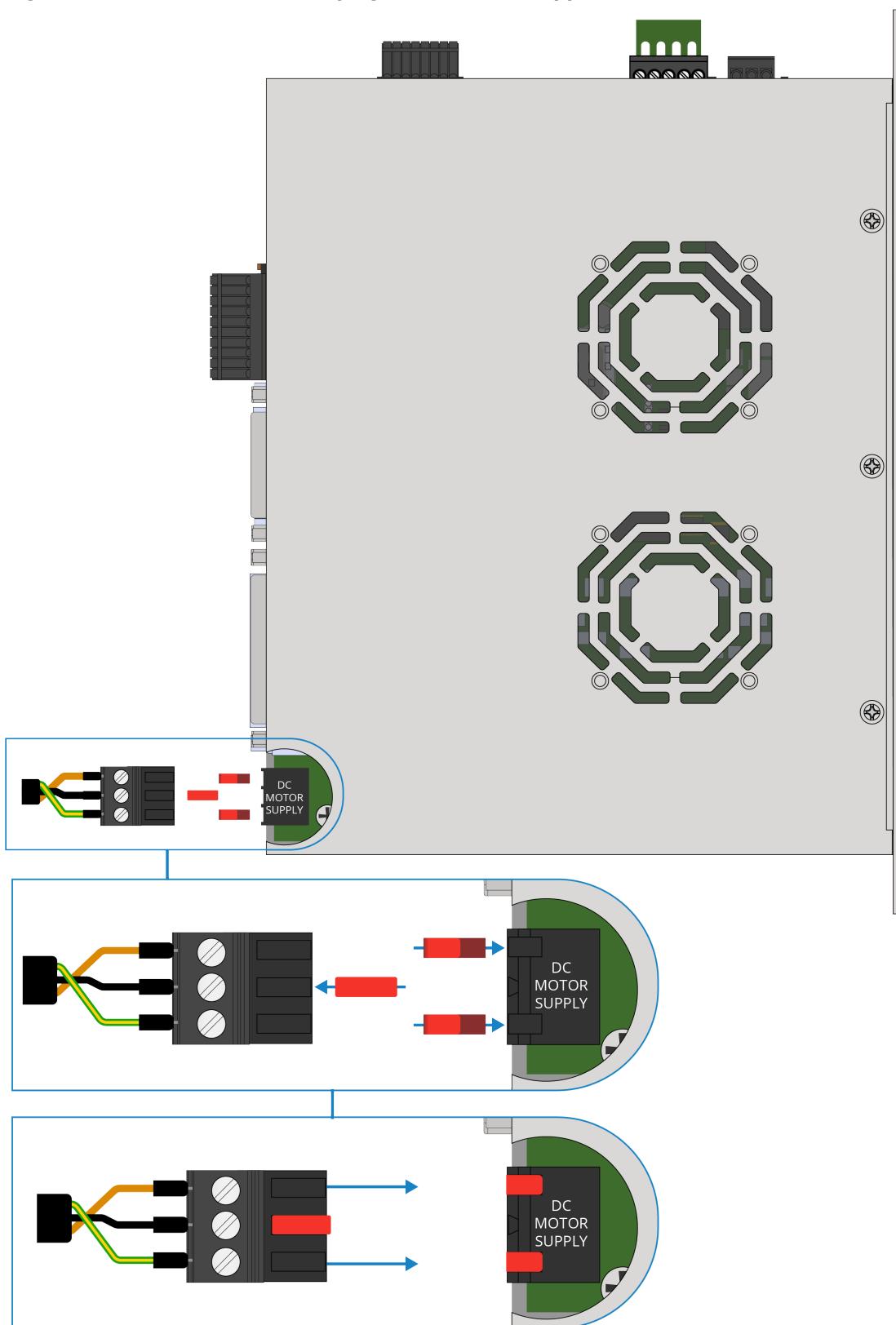
**IMPORTANT:** If you insert a key with the cover on, you will accidentally break off the points adjacent to the point you are trying to use as a key. It would be easier to insert the key if you take the two points adjacent to the one you are trying to insert off the key star (refer to [Figure 2-3](#)).

**Figure 2-3: Key Star Tool**



**Table 2-5: Key Part Numbers**

| Location   | Part Number                                    |
|------------|------------------------------------------------|
| Cable Side | Aerotech P/N: EIK00501<br>Phoenix P/N: 1734634 |
| Drive Side | Aerotech P/N: EIK00500<br>Phoenix P/N: 1734401 |


**Table 2-6: Recommended Keying for DC Motor Supplies (Drive Connector)**

| Pin | Action     |
|-----|------------|
| DC+ | Key        |
| DC- | Do not key |
|     | Key        |

**Table 2-7: Recommended Keying for DC Motor Supplies (DC Supply Cables)**

| Pin | Action     |
|-----|------------|
| DC+ | Do not key |
| DC- | Key        |
|     | Do not key |

Figure 2-4: Recommended Keying for DC Motor Supplies



#### 2.1.4. Minimizing Noise for EMC/CE Compliance



**IMPORTANT:** The iHXA4/HXA4 is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

To reduce electrical noise, observe the following motor feedback and input power wiring techniques.

1. Use shielded cable for motor and feedback connectors. Connect the shield to the backshell at each end of the cable.
2. Separate motor and power wiring from encoder and I/O wiring.
3. Mount drives, power supplies, and filter components on a conductive panel. Keep wire-run lengths to a minimum. For the AC power lines feeding the VDC Motor supply and VDC Control supply, place a line filter, such as Schaffner FN2070-10-06 (Aerotech# ECZ00284) between the VDC power supply's AC inputs and the AC power source.
4. Use the lowest motor voltage required by the application to reduce radiated emission.
5. Use a separate wire for each ground connection to the drive. Use the shortest possible wire length.

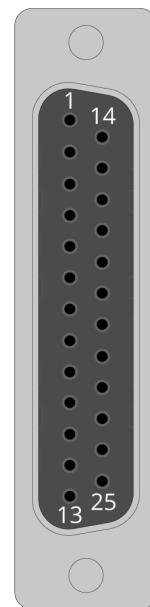
For typical system interconnections, refer to [Section 2.10. System Interconnection](#).

## 2.2. Motor Power Output Connector

The drive can be used to control the following motor types:

- Aerotech Brushless Hexapod Motors

For a complete list of electrical specifications, refer to [Section 1.4](#).




### DANGER: Shock and Fire Hazard

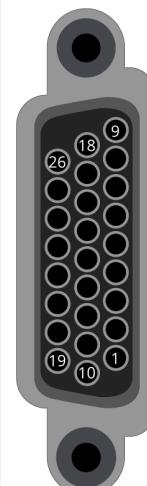
Electrical wiring must be designed and installed in accordance with local electrical safety regulations to prevent the risk of fire and electrical shock.

**Table 2-8: Motor Power Output Connector Pinout**

| Pin # | Description            | Connector |
|-------|------------------------|-----------|
| 13    | Earth Ground           |           |
| 14    | Motor Phase A (Axis 1) |           |
| 2     | Motor Phase B (Axis 1) |           |
| 15    | Motor Phase C (Axis 1) |           |
| 1     | Motor Ground (Axis 1)  |           |
| 16    | Motor Phase A (Axis 2) |           |
| 4     | Motor Phase B (Axis 2) |           |
| 17    | Motor Phase C (Axis 2) |           |
| 3     | Motor Ground (Axis 2)  |           |
| 18    | Motor Phase A (Axis 3) |           |
| 6     | Motor Phase B (Axis 3) |           |
| 19    | Motor Phase C (Axis 3) |           |
| 5     | Motor Ground (Axis 3)  |           |
| 20    | Motor Phase A (Axis 4) |           |
| 8     | Motor Phase B (Axis 4) |           |
| 21    | Motor Phase C (Axis 4) |           |
| 7     | Motor Ground (Axis 4)  |           |
| 22    | Motor Phase A (Axis 5) |           |
| 10    | Motor Phase B (Axis 5) |           |
| 23    | Motor Phase C (Axis 5) |           |
| 9     | Motor Ground (Axis 5)  |           |
| 24    | Motor Phase A (Axis 6) |           |
| 12    | Motor Phase B (Axis 6) |           |
| 25    | Motor Phase C (Axis 6) |           |
| 11    | Motor Ground (Axis 6)  |           |



**Table 2-9: Feedback Mating Connector Ratings**


| Specification                       | 25-Pin Solder Cup             | Backshell  |
|-------------------------------------|-------------------------------|------------|
| Aerotech Part Number                | ECK00101                      | ECK00656   |
| Amphenol Part Number <sup>(1)</sup> | DB25P064TXLF                  | 17E-1726-2 |
| Maximum Wire Size                   | 20 AWG (0.5 mm <sup>2</sup> ) | N/A        |

(1) Refer to the manufacturer website for additional information.

## 2.3. Feedback Connector

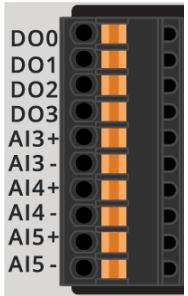
The connector pin assignment is shown in [Table 2-10](#).

**Table 2-10: Feedback Connector Pinout**

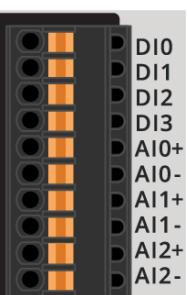
| Pin#   | Description                                          | In/Out/Bi     | Connector                                                                            |
|--------|------------------------------------------------------|---------------|--------------------------------------------------------------------------------------|
| 1      | Axis 1 Sine                                          | Input         |  |
|        | Axis 1 Absolute Encoder Data -                       | Bidirectional |                                                                                      |
| 2      | Axis 2 Sine                                          | Input         |                                                                                      |
|        | Axis 2 Absolute Encoder Data -                       | Bidirectional |                                                                                      |
| 3      | Axis 3 Sine                                          | Input         |                                                                                      |
|        | Axis 3 Absolute Encoder Data -                       | Bidirectional |                                                                                      |
| 4      | Axis 4 Sine                                          | Input         |                                                                                      |
|        | Axis 4 Absolute Encoder Data -                       | Bidirectional |                                                                                      |
| 5      | Axis 5 Sine                                          | Input         |                                                                                      |
|        | Axis 5 Absolute Encoder Data -                       | Bidirectional |                                                                                      |
| 6      | Axis 6 Sine                                          | Input         |                                                                                      |
|        | Axis 6 Absolute Encoder Data -                       | Bidirectional |                                                                                      |
| 7, 8   | +5 V Power (3 A max. combined current output)        | Output        |                                                                                      |
| 9      | Reserved                                             | Output        |                                                                                      |
| 10     | Axis 1 Cosine                                        | Input         |                                                                                      |
|        | Axis 1 Absolute Encoder Data +                       | Bidirectional |                                                                                      |
| 11     | Axis 2 Cosine                                        | Input         |                                                                                      |
|        | Axis 2 Absolute Encoder Data +                       | Bidirectional |                                                                                      |
| 12     | Axis 3 Cosine                                        | Input         |                                                                                      |
|        | Axis 3 Absolute Encoder Data +                       | Bidirectional |                                                                                      |
| 13     | Axis 4 Cosine                                        | Input         |                                                                                      |
|        | Axis 4 Absolute Encoder Data +                       | Bidirectional |                                                                                      |
| 14     | Axis 5 Cosine                                        | Input         |                                                                                      |
|        | Axis 5 Absolute Encoder Data +                       | Bidirectional |                                                                                      |
| 15     | Axis 6 Cosine                                        | Input         |                                                                                      |
|        | Axis 6 Absolute Encoder Data +                       | Bidirectional |                                                                                      |
| 16, 17 | Signal Common                                        | Output        |                                                                                      |
| 18     | Plug and Play Serial Data (for Aerotech stages only) | Bidirectional |                                                                                      |
| 19     | Analog Encoded Status Signal Channel 1               | Input         |                                                                                      |
|        | Serial Encoded Status Data -                         | Bidirectional |                                                                                      |
| 20     | Analog Encoded Status Signal Channel 2               | Input         |                                                                                      |
|        | Serial Encoded Status Data +                         | Bidirectional |                                                                                      |
| 21     | Analog Encoded Status Signal Channel 3               | Input         |                                                                                      |
| 22     | Analog Encoded Status Signal Channel 4               | Input         |                                                                                      |
| 23     | Analog Encoded Status Signal Channel 5               | Input         |                                                                                      |
|        | Absolute Encoder Clock -                             | Output        |                                                                                      |
| 24     | Analog Encoded Status Signal Channel 6               | Input         |                                                                                      |
|        | Absolute Encoder Clock +                             | Output        |                                                                                      |
| 25, 26 | Signal Common                                        | Output        |                                                                                      |

**Table 2-11: Feedback Mating Connector Ratings**

| Specification                                                     | 26-Pin Solder Cup              | Backshell           |
|-------------------------------------------------------------------|--------------------------------|---------------------|
| Aerotech Part Number                                              | ECK01259                       | ECK01022            |
| Manufacturer Part Number <sup>(1)</sup>                           | Kycon K86-AA-26P               | Amphenol 17E-1725-2 |
| Maximum Wire Size                                                 | 22 AWG (0.25 mm <sup>2</sup> ) | N/A                 |
| (1) Refer to the manufacturer website for additional information. |                                |                     |


## 2.4. I/O A and B Connectors

The "A" connector has four digital, optically-isolated outputs and three differential analog inputs.


The "B" connector has four digital, optically-isolated inputs and three differential analog inputs.

Digital input common and digital output common are on the Auxiliary I/O connector (refer to [Section 2.5. Auxiliary I/O Connector](#)).

**Table 2-12: I/O Connector "A" Pinout**

| Pin # | Label | Description                           | In/Out/Bi | Connector                                                                           |
|-------|-------|---------------------------------------|-----------|-------------------------------------------------------------------------------------|
| 1     | DO0   | Digital Output 0 (Optically-Isolated) | Output    |  |
| 2     | DO1   | Digital Output 1 (Optically-Isolated) | Output    |                                                                                     |
| 3     | DO2   | Digital Output 2 (Optically-Isolated) | Output    |                                                                                     |
| 4     | DO3   | Digital Output 3 (Optically-Isolated) | Output    |                                                                                     |
| 5     | AI3+  | Analog Input 3+                       | Input     |                                                                                     |
| 6     | AI3-  | Analog Input 3-                       | Input     |                                                                                     |
| 7     | AI4+  | Analog Input 4+                       | Input     |                                                                                     |
| 8     | AI4-  | Analog Input 4-                       | Input     |                                                                                     |
| 9     | AI5+  | Analog Input 5+                       | Input     |                                                                                     |
| 10    | AI5-  | Analog Input 5-                       | Input     |                                                                                     |

**Table 2-13: I/O Connector "B" Pinout**

| Pin # | Label | Description                          | In/Out/Bi | Connector                                                                            |
|-------|-------|--------------------------------------|-----------|--------------------------------------------------------------------------------------|
| 1     | DI0   | Digital Input 0 (Optically-Isolated) | Input     |  |
| 2     | DI1   | Digital Input 1 (Optically-Isolated) | Input     |                                                                                      |
| 3     | DI2   | Digital Input 2 (Optically-Isolated) | Input     |                                                                                      |
| 4     | DI3   | Digital Input 3 (Optically-Isolated) | Input     |                                                                                      |
| 5     | AI0+  | Analog Input 0+                      | Input     |                                                                                      |
| 6     | AI0-  | Analog Input 0-                      | Input     |                                                                                      |
| 7     | AI1+  | Analog Input 1+                      | Input     |                                                                                      |
| 8     | AI1-  | Analog Input 1-                      | Input     |                                                                                      |
| 9     | AI2+  | Analog Input 2+                      | Input     |                                                                                      |
| 10    | AI2-  | Analog Input 2-                      | Input     |                                                                                      |

**Table 2-14: Mating Connector Part Numbers for the I/O Connectors**

| Specification                                                     | Description                                    |                                           |
|-------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|
| Type                                                              | 10-Pin Terminal Block                          |                                           |
| Part Numbers                                                      | Aerotech: ECK02395                             |                                           |
|                                                                   |                                                | Phoenix: 1700841                          |
| Conductor Cross Section                                           | Solid or stranded                              | 20...26 AWG (0.14...0.5 mm <sup>2</sup> ) |
|                                                                   | Stranded, with ferrule, without plastic sleeve | 20...24 AWG (0.25...0.5 mm <sup>2</sup> ) |
| Conductor Insulation Strip Length                                 | 8 mm (5/16 in)                                 |                                           |
| (1) Refer to the manufacturer website for additional information. |                                                |                                           |

## 2.4.1. Digital Inputs

Input bits are arranged in a group of 4 and share a common pin (INCOM, PIN-7, located on the Auxiliary I/O connector). This lets a group be connected to current sourcing or current sinking devices, based on the connection of the common pin.

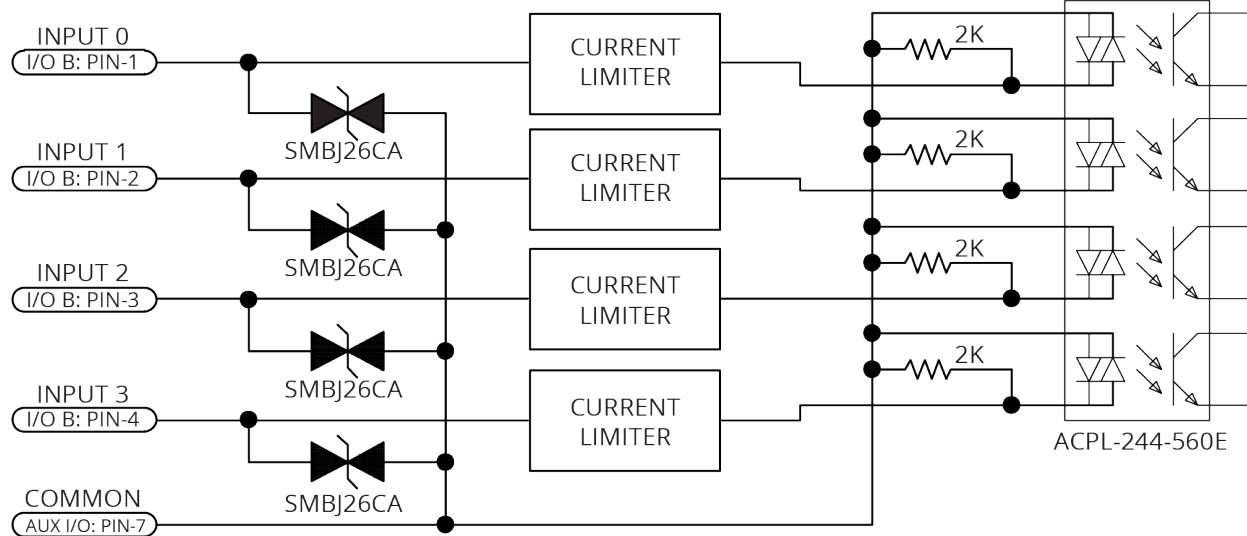
To be able to connect an input group to current sourcing devices, connect the common pin to the power supply return (-). Refer to [Figure 2-6](#).

To be able to connect an input group to current sinking devices, connect the common pin to the power supply source (+). Refer to [Figure 2-7](#).

The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.

**Table 2-15: Digital Input Specifications**

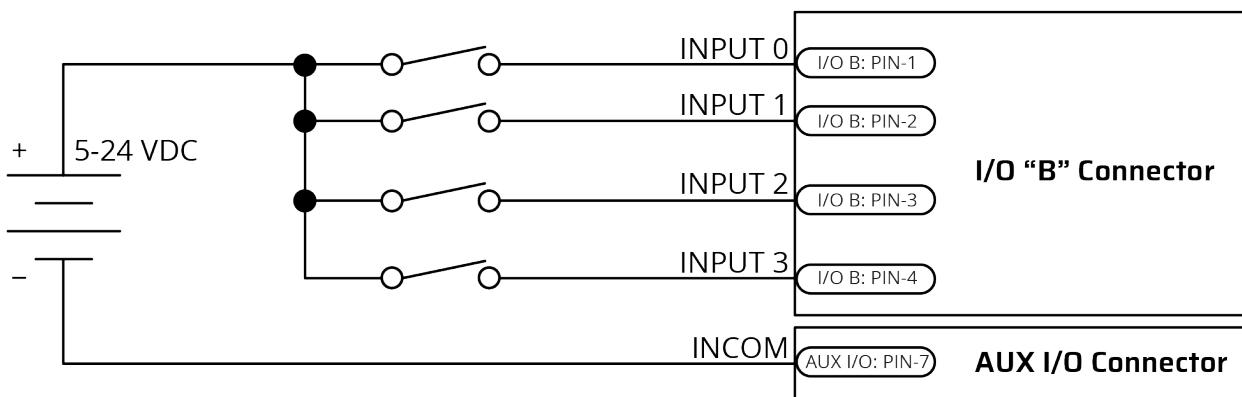
| Input Voltage | Approximate Input Current | Turn On Time | Turn Off Time |
|---------------|---------------------------|--------------|---------------|
| +5 V to +24 V | 6 mA                      | 10 $\mu$ s   | 43 $\mu$ s    |


**Table 2-16: Digital Input Pins on the I/O "B" Connector**

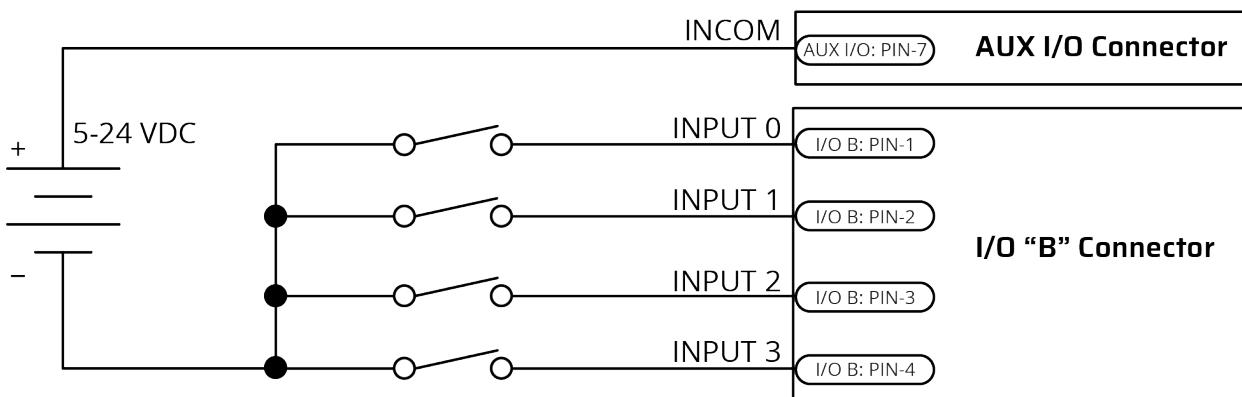
| Pin # | Label | Description                          | In/Out/Bi |
|-------|-------|--------------------------------------|-----------|
| 1     | DI0   | Digital Input 0 (Optically-Isolated) | Input     |
| 2     | DI1   | Digital Input 1 (Optically-Isolated) | Input     |
| 3     | DI2   | Digital Input 2 (Optically-Isolated) | Input     |
| 4     | DI3   | Digital Input 3 (Optically-Isolated) | Input     |

**Table 2-17: Digital Input Pin on the Auxiliary I/O Connector**

| Pin # | Label | Description          | In/Out/Bi |
|-------|-------|----------------------|-----------|
| 7     | INCOM | Digital Input Common | Input     |


**Figure 2-5: Digital Inputs Schematic**






**IMPORTANT:** Each bank of four inputs must be connected in an all sourcing or all sinking configuration.

**Figure 2-6: Digital Inputs Connected to Current Sourcing (PNP) Devices**



**Figure 2-7: Digital Inputs Connected to Current Sinking (NPN) Devices**



## 2.4.2. Digital Outputs

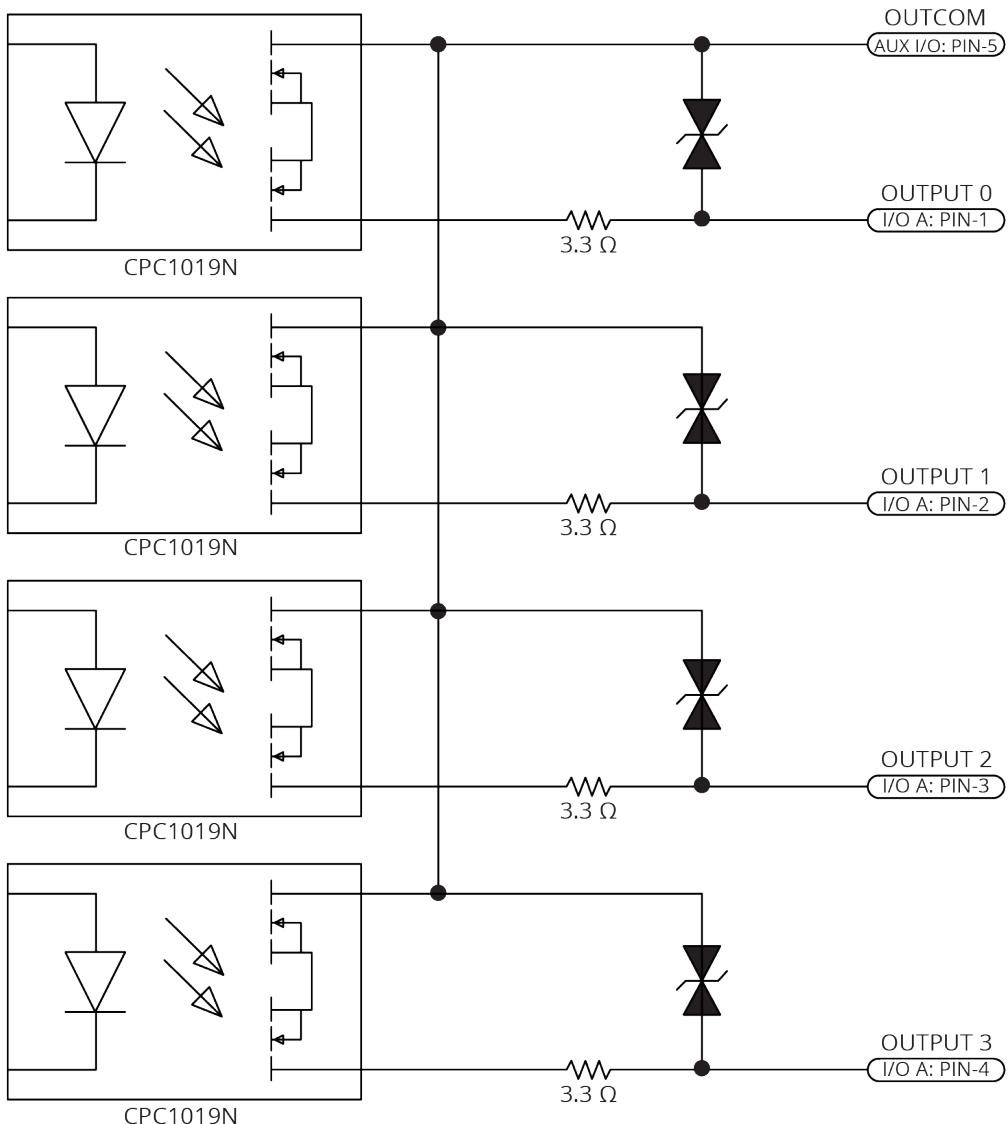
Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in a port in the same configuration. Refer to [Figure 2-9](#) and [Figure 2-10](#).

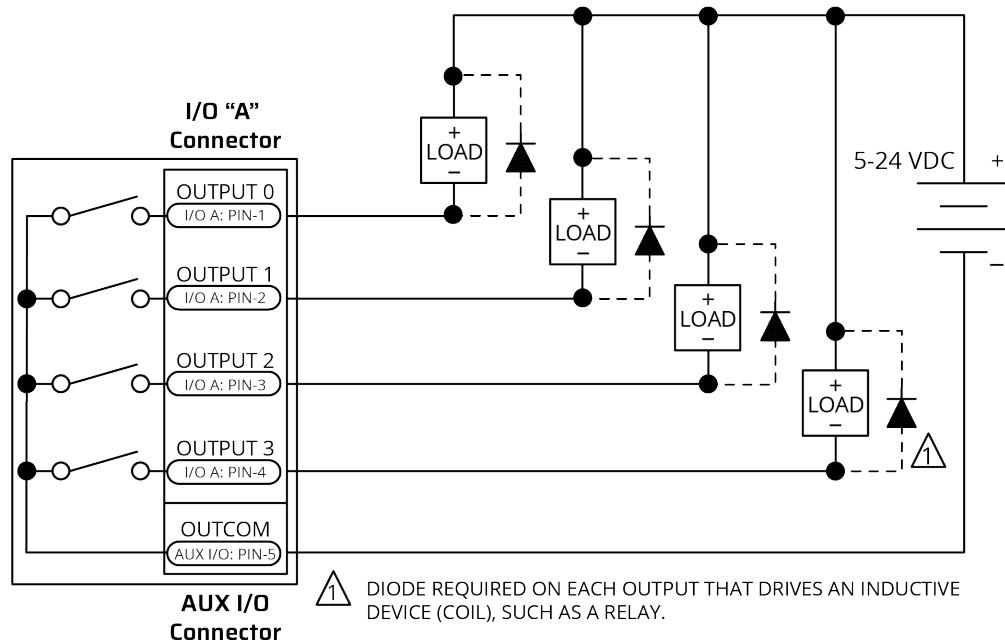
The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to [Figure 2-9](#). To see an example of a current sinking output that has diode suppression, refer to [Figure 2-10](#).

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

**Table 2-18: Digital Output Specifications**


| Digital Output Specifications | Value                             |
|-------------------------------|-----------------------------------|
| Maximum Voltage               | 24 V (26 V Maximum)               |
| Maximum Sink/Source Current   | 250 mA/output                     |
| Output Saturation Voltage     | 0.9 V at maximum current          |
| Output Resistance             | 3.7 Ω                             |
| Rise / Fall Time              | 250 μs (2K pull up to 24V)        |
| Reset State                   | Output Off (High Impedance State) |


**Table 2-19: Digital Output Pins on the I/O "A" Connector**

| Pin # | Label | Description                           | In/Out/Bi |
|-------|-------|---------------------------------------|-----------|
| 1     | DO0   | Digital Output 0 (Optically-Isolated) | Output    |
| 2     | DO1   | Digital Output 1 (Optically-Isolated) | Output    |
| 3     | DO2   | Digital Output 2 (Optically-Isolated) | Output    |
| 4     | DO3   | Digital Output 3 (Optically-Isolated) | Output    |

**Table 2-20: Digital Output Pin on the Auxiliary I/O Connector**

| Pin # | Label  | Description           | In/Out/Bi |
|-------|--------|-----------------------|-----------|
| 5     | OUTCOM | Digital Output Common | Output    |

**Figure 2-8: Digital Output Schematic (Auxiliary I/O Connector)**

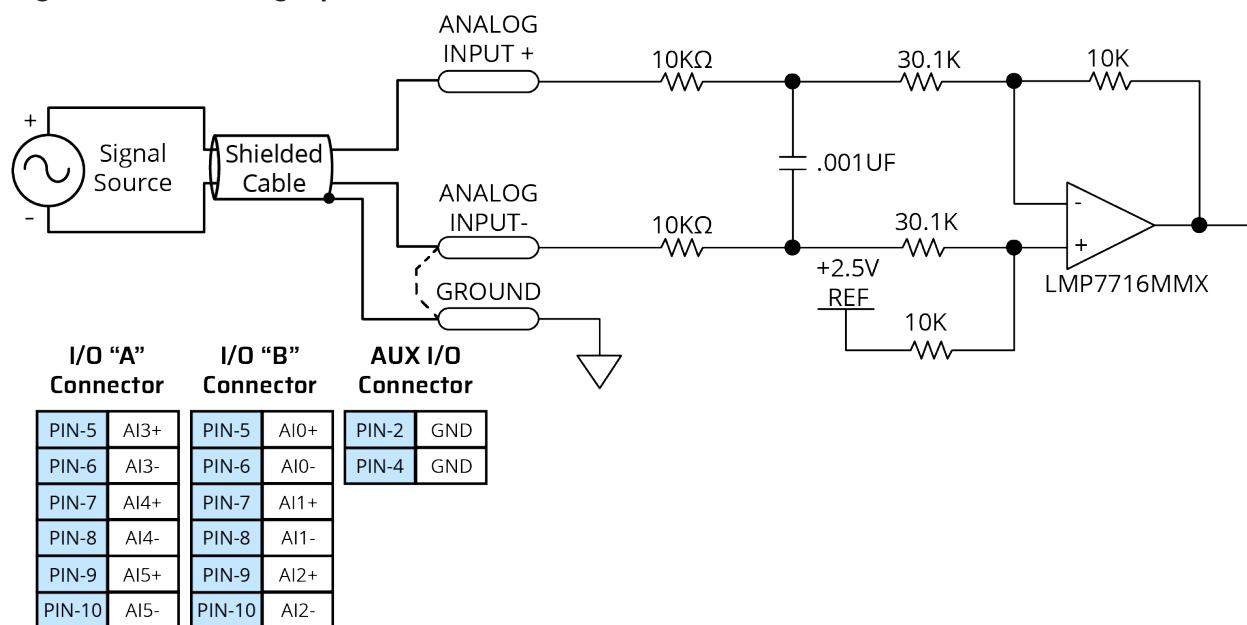
**Figure 2-9: Digital Outputs Connected in Current Sourcing Mode****Figure 2-10: Digital Outputs Connected in Current Sinking Mode**

### 2.4.3. Analog Inputs

To interface to a single-ended, non-differential voltage source, connect the signal common of the source to the negative input and connect the analog source signal to the positive input. A floating signal source must be referenced to the analog common. Refer to [Figure 2-11](#).

**Table 2-21: Differential Analog Input Specifications**

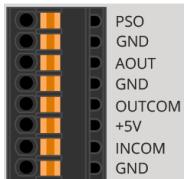
| Specification                                         | Value                         |
|-------------------------------------------------------|-------------------------------|
| (AI+) - (AI-)                                         | +10 V to -10 V <sup>(1)</sup> |
| Resolution (bits)                                     | 16 bits                       |
| Input Impedance                                       | 50 kΩ                         |
| 1. Signals outside of this range may damage the input |                               |


**Table 2-22: I/O Connector "A" Analog Inputs Pinout**

| Pin # | Label | Description     | In/Out/Bi |
|-------|-------|-----------------|-----------|
| 5     | AI3+  | Analog Input 3+ | Input     |
| 6     | AI3-  | Analog Input 3- | Input     |
| 7     | AI4+  | Analog Input 4+ | Input     |
| 8     | AI4-  | Analog Input 4- | Input     |
| 9     | AI5+  | Analog Input 5+ | Input     |
| 10    | AI5-  | Analog Input 5- | Input     |

**Table 2-23: I/O Connector "B" Analog Inputs Pinout**

| Pin # | Label | Description     | In/Out/Bi |
|-------|-------|-----------------|-----------|
| 5     | AI0+  | Analog Input 0+ | Input     |
| 6     | AI0-  | Analog Input 0- | Input     |
| 7     | AI1+  | Analog Input 1+ | Input     |
| 8     | AI1-  | Analog Input 1- | Input     |
| 9     | AI2+  | Analog Input 2+ | Input     |
| 10    | AI2-  | Analog Input 2- | Input     |


**Figure 2-11: Analog Inputs Schematic**



## 2.5. Auxiliary I/O Connector

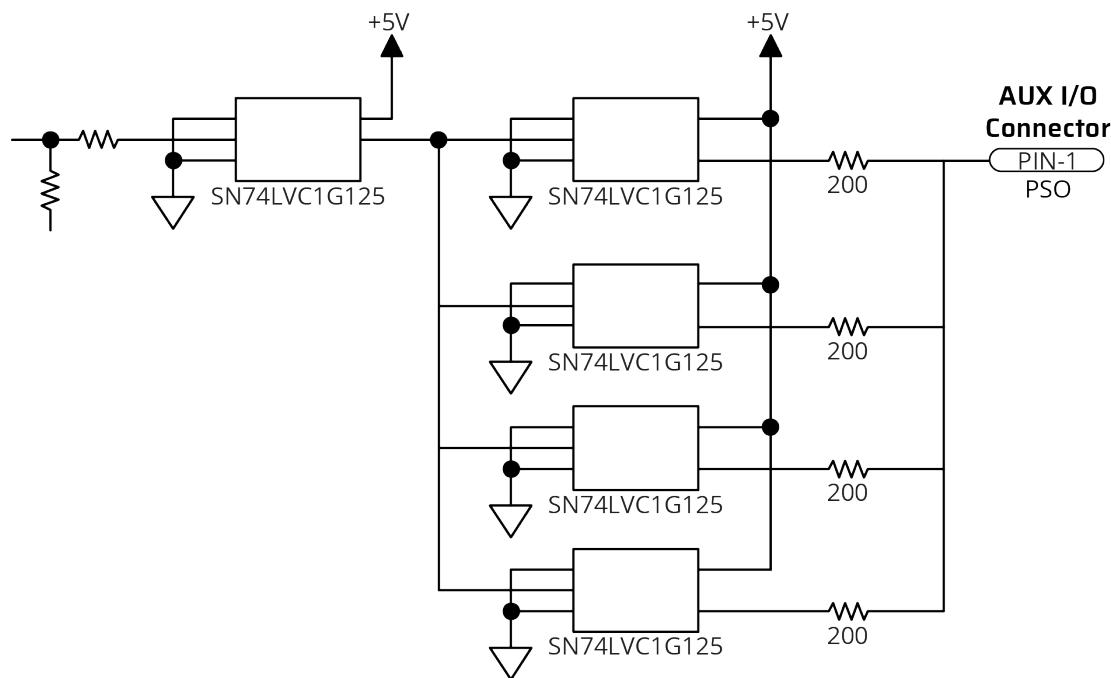
The Auxiliary I/O connector has one PSO output, one analog output, common pins for the digital input and output pins on the I/O connector, one +5 VDC source (500 mA max), and three ground connections.

**Table 2-24: Auxiliary I/O Connector Pinout**

| Pin #  | Label  | Description                        | In/Out/Bi | Connector                                                                                                                                                                                                                   |     |     |      |     |        |     |       |     |
|--------|--------|------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|-----|--------|-----|-------|-----|
| 1      | PSO    | Position Synchronized Output (TTL) | Output    |  <table><tr><td>PSO</td><td>GND</td><td>AOUT</td><td>GND</td></tr><tr><td>OUTCOM</td><td>+5V</td><td>INCOM</td><td>GND</td></tr></table> | PSO | GND | AOUT | GND | OUTCOM | +5V | INCOM | GND |
| PSO    | GND    | AOUT                               | GND       |                                                                                                                                                                                                                             |     |     |      |     |        |     |       |     |
| OUTCOM | +5V    | INCOM                              | GND       |                                                                                                                                                                                                                             |     |     |      |     |        |     |       |     |
| 2      | GND    | Ground                             | N/A       |                                                                                                                                                                                                                             |     |     |      |     |        |     |       |     |
| 3      | AOUT   | Analog Output                      | Output    |                                                                                                                                                                                                                             |     |     |      |     |        |     |       |     |
| 4      | GND    | Ground                             | N/A       |                                                                                                                                                                                                                             |     |     |      |     |        |     |       |     |
| 5      | OUTCOM | Digital Output Common              | Output    |                                                                                                                                                                                                                             |     |     |      |     |        |     |       |     |
| 6      | +5V    | +5 V (500 mA max)                  | Output    |                                                                                                                                                                                                                             |     |     |      |     |        |     |       |     |
| 7      | INCOM  | Digital Input Common               | Input     |                                                                                                                                                                                                                             |     |     |      |     |        |     |       |     |
| 8      | GND    | Ground                             | N/A       |                                                                                                                                                                                                                             |     |     |      |     |        |     |       |     |

### 2.5.1. Position Synchronized Output (PSO)

This output signal is a 5V TTL signal which is used to drive an opto coupler or general purpose TTL input. This signal is active high and is driven to 5V when a PSO fire event occurs.


**Table 2-25: PSO Specifications**

| Specification                                   | Value            |
|-------------------------------------------------|------------------|
| Output                                          | 5 V, 16 mA (max) |
| Maximum PSO Output (Fire) Frequency             | 12.5 MHz         |
| Output Latency<br>[Fire event to output change] | 25 ns            |

**Table 2-26: Auxiliary I/O Connector**

| Pin # | Label | Description                        | In/Out/Bi |
|-------|-------|------------------------------------|-----------|
| 1     | PSO   | Position Synchronized Output (TTL) | Output    |

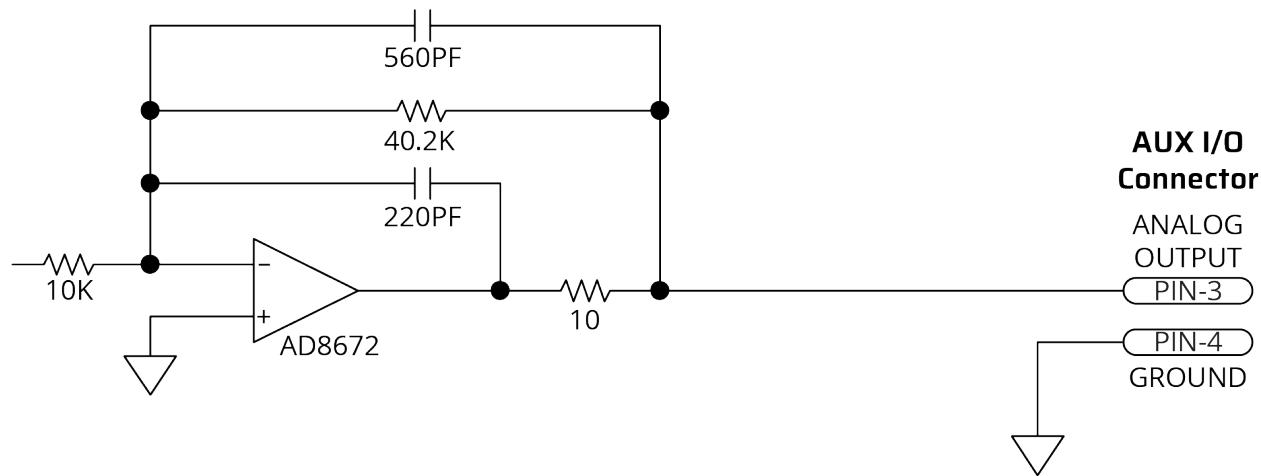
**Figure 2-12: PSO Interface**



## 2.5.2. Analog Output

The analog output can be set from within a program or it can be configured to echo the state of select servo loop nodes.

The analog output is set to zero when you power on the system or reset the drive.


**Table 2-27: Analog Output Specifications**

| Specification     | Value          |
|-------------------|----------------|
| Output Voltage    | -10 V to +10 V |
| Output Current    | 5 mA           |
| Resolution (bits) | 16 bits        |

**Table 2-28: Analog Output Pin on the Auxiliary I/O Connector**

| Pin # | Label | Description   | In/Out/Bi |
|-------|-------|---------------|-----------|
| 3     | AOUT  | Analog Output | Output    |

**Figure 2-13: Analog Output Schematic**

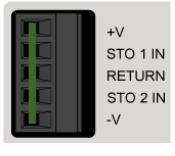


## 2.6. Safe Torque Off Input (STO)

The STO circuit is comprised of two identical channels, each of which must be energized in order for the drive to produce motion. Each STO input is opto-isolated and accepts 24 V levels directly without the need for external current limiting resistors.



**IMPORTANT:** The drive might be equipped with an STO bypass circuit board. The bypass circuit board defeats the STO safety circuit and allows the system to run at all times. To use the STO safety functionality, remove the circuit board and make connections as outlined in this section. Refer to [Installation Overview](#) on [Page 14](#) for the location of the STO bypass plug.




**IMPORTANT:** The application circuit and its suitability for the desired safety level is the sole responsibility of the user of the drive.



**WARNING:** STO wires must be insulated to prevent short circuits between connector pins. The primary concern is a short circuit between STO 1 IN and STO 2 IN wire strands.

**Table 2-29: STO Connector Pinout**

| Pin # | Signal         | Description                                                                          | In/Out/Bi | Connector                                                                            |
|-------|----------------|--------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------|
| 1     | Power Supply + | Use only to defeat STO by connecting to STO 1 IN and STO 2 IN. Not for customer use. | Output    |  |
| 2     | STO 1 IN       | STO Channel 1 Positive Input                                                         | Input     |                                                                                      |
| 3     | RETURN         | STO Negative Input                                                                   | Input     |                                                                                      |
| 4     | STO 2 IN       | STO Channel 2 Positive Input                                                         | Input     |                                                                                      |
| 5     | Power Supply - | Use only to defeat STO by connecting to RETURN. Not for customer use.                | Output    |                                                                                      |

**Table 2-30: STO Mating Connector Ratings**

| Specification                     | Description                                                                     |                                            |
|-----------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|
| Type                              | 5-Pin Terminal Block                                                            |                                            |
| Part Numbers                      | Aerotech: ECK02393<br>Phoenix: 1827622                                          |                                            |
| Conductor Cross Section           | One conductor, stranded with ferrule and plastic sleeve                         | 18...22 AWG (0.25...0.75 mm <sup>2</sup> ) |
|                                   | Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve | 20 AWG (0.5 mm <sup>2</sup> )              |
| Tightening Torque                 | 0.22...0.25 N·m                                                                 |                                            |
| Conductor Insulation Strip Length | 7 mm (0.25 in)                                                                  |                                            |

(1) Refer to the manufacturer website for additional information.

Table 2-31: STO Electrical Specifications

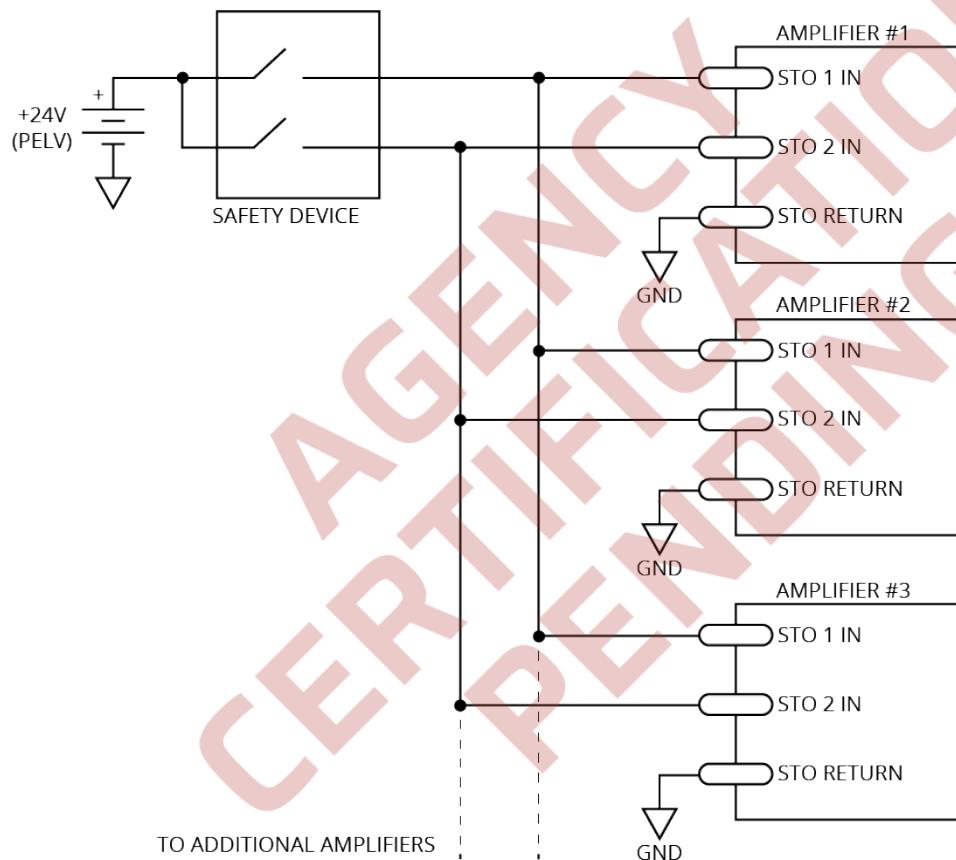

| Status                                 | Value                                   |
|----------------------------------------|-----------------------------------------|
| STO off (motion allowed)               | 18-24 V, 7 ma                           |
| STO on (safe state entered, no motion) | 0-6 V                                   |
| Recommended Wire Gauge                 | 22-26 AWG (0.5 - 0.14 mm <sup>2</sup> ) |
| STO System Power Supply                | PELV                                    |
| STO Wire Length (maximum)              | 50 m                                    |

Figure 2-14 shows one safety device connected to multiple drives in parallel.



**WARNING:** The drive does not check for short circuits on the external STO wiring. If this is not done by the external safety device, short circuits on the wiring must be excluded. Refer to EN ISO 13849-2. For Category 4 systems, the exclusion of short circuits is mandatory.

Figure 2-14: Typical STO Configuration



### 2.6.1. STO Standards

Table 2-32 describes and specifies the safety requirements at the system level for the Safe Torque Off (STO) feature of the drive. This assumes that diagnostic testing is performed according to Section 2.6.4. and Table 2-33.

Table 2-32: STO Standards

| Standard                          | Maximum Achievable Safety |
|-----------------------------------|---------------------------|
| EN/IEC 61800-5- 2:2016            | SIL 3                     |
| EN/IEC 61508-1:2010               | SIL 3                     |
| EN/IEC 61508-2:2010               | SIL 3                     |
| EN ISO 13849-1:2015               | Category 4, PL e          |
| EN/IEC 62061:2005 with Amendments | SIL 3                     |

Table 2-33: STO Standards Data

| Standard                            | Value                                                                                                                                                                                                                                                                      |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN ISO 13849-1:2015                 | $MTTF_D > 100$ years,<br>$DC_{AVG} 99\%$<br>Maximum PL e, Category 4                                                                                                                                                                                                       |
| EN ISO 13849-1:2015<br>EN/IEC 61508 | Lifetime = 20 years<br>No proof test required<br>Interval for manual STO test: <ul style="list-style-type: none"><li>Once per year for SIL2/PL d/category 3</li><li>Once per three months for SIL3/PL e/category 3</li><li>Once per day for SIL3/PL e/category 4</li></ul> |
| EN/IEC 61508                        | SIL3<br>$PFH < 3$ FIT<br>$SFF > 99\%$                                                                                                                                                                                                                                      |

## 2.6.2. STO Functional Description

The motor can only be activated when voltage is applied to both STO 1 and STO 2 inputs. The STO state will be entered if power is removed from either the STO 1 or the STO 2 inputs. When the STO state is entered, the motor cannot generate torque or force and is therefore considered safe. Both STO channels must be driven at the same time. If they are not driven at the same time, a diagnostic test failure will occur (refer to [STO Diagnostics](#)).

The STO function is implemented with two redundant channels in order to meet stated performance and SIL levels. STO 1 disconnects the high side power amplifier transistors and STO 2 disconnects the low side power amplifier transistors. Disconnecting either set of transistors effectively prevents the drive from being able to produce motion.

The drive software monitors each STO channel and will generate an Emergency Stop software fault when either channel signals the stop state. Each STO channel contains a fixed delay which allows the drive to perform a controlled stop before the power amplifier transistors are turned off.

A typical configuration requiring a controlled stop has the Emergency Stop Fault mask bit set in the [FaultMask](#), [FaultMaskDecel](#), and [FaultMaskDisable](#) parameters. This stops the axis using the rate specified by the [AbortDecelRate](#) parameter. The software will disable the axis as soon as the deceleration ramp is complete. This is typically configured to occur before the STO channel turns off the power amplifier transistors.

The software-controlled stop functionality must be excluded when considering overall system safety. This is because the software is not safety rated and cannot be included as part of the safety function.

The software-controlled stop function can ignore short diagnostic pulses on the STO 1+ and STO 2+ inputs. The [StoPulseFilter](#) parameter specifies the maximum pulse width that the software will ignore. The filter parameter does not affect the operation of STO hardware channels.

To resume normal operation, apply power to both STO 1 and STO 2 inputs and use the [Acknowledge All](#) button or the [AcknowledgeAll\(\)](#) or [FaultAcknowledge\(\)](#) function to clear the Emergency Stop software fault. The recommended use of the Emergency Stop Fault fault mask bits prevent the system from automatically restarting.

You can achieve longer delay times through the use of an external delay timer, such as the Omron G9SA-321 Safety Relay Unit. Place this device between the system ESTOP wiring and the drive's STO inputs. Connect the ESTOP signal directly to a digital input, in addition to the external timer, to allow the drive to begin a software-controlled stop as soon as the ESTOP signal becomes active. Use the [EmergencyStopFaultInput](#) parameter to configure a digital input as an ESTOP input.

The STO feature can only be used with AC or stepper motor types. It is not certified to prevent hazardous motion when using DC brush or Voice Coil motor types.

Non-standard STO delay times are provided by special factory order. In this case, the non-standard STO delay time is indicated by a label placed on the slice amplifier's main connector (STO DELAY = xx sec).

**Table 2-34: STO Signal Delay**

|                | Value        |
|----------------|--------------|
| STO Time Delay | 450-550 msec |

**Table 2-35: Motor Function Relative to STO Input State**

| STO 1                    | STO 2                    | Motor Function   |
|--------------------------|--------------------------|------------------|
| Unpowered                | Unpowered                | No force/torque  |
| Unpowered <sup>(1)</sup> | Powered <sup>(1)</sup>   | No force/torque  |
| Powered <sup>(1)</sup>   | Unpowered <sup>(1)</sup> | No force/torque  |
| Powered                  | Powered                  | Normal Operation |

1. This is considered a Fault Condition since STO 1 and STO 2 do not match. Refer to [Section 2.6.4](#).

### 2.6.3. STO Startup Validation Testing

Verify the state of the STO 1 and STO 2 channels by manually activating the external STO hardware. Each STO channel must be tested separately in order to detect potential short circuits between the channels. The current state of the STO 1 and STO 2 inputs is shown in the Status Utility. A “–” indicates that the STO input is powered by a high voltage level (24 V). An “ON” indicates that the voltage source has been removed from the input (open circuit or 0 V), and that the STO channel is in the safe state.

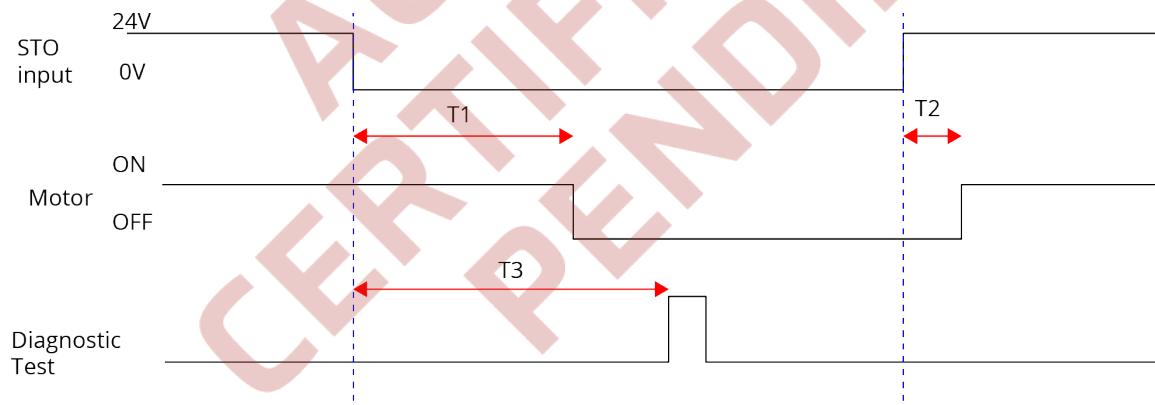


**DANGER:** The STO circuit does not remove lethal voltage from the motor terminals. AC mains power must be removed before servicing.

## 2.6.4. STO Diagnostics

Activation of STO means removing power from the drive STO inputs. This is typically done by pressing the emergency stop switch. The drive initiates a diagnostic check every time the STO is activated after the Diagnostic Test Delay Time has elapsed. The diagnostic check verifies that each channel has entered the safe state. The drive is held in the safe state if it determines that one of the channels has not properly entered the safe state. An open circuit or short to 24 V in either STO channel will result in this condition (refer to [Section 2.6.3](#)). The Status Utility screen can be used to verify the levels of the STO input signals while troubleshooting. The safe state is cleared when both STO channels are cycled with matching signal levels such that the diagnostic test completes successfully.

The drive is held in the safe state if it determines that one of the channels has not properly entered the safe state. In this case, the **stoCrossCheckFault** bit will be set and can be viewed in the **STO Status** status item. A **Position Error Fault** or **Emergency Stop Fault** will occur if motion is attempted while in this state. The drive will remain in the safe state until STO is reactivated with both channels in a safe state such that the diagnostics test completes successfully.


An open circuit or short to 24 V in either STO channel or a timing difference between the channels will result in a diagnostic test failure (refer to [STO Startup Validation Testing](#)). The Status Utility screen or **STO Status** status item can be used to verify the levels of the STO input signals while troubleshooting.

In order to pass internal testing, the STO circuit must be activated (power removed from both inputs) according to the interval specified in [Table 2-33](#).

**Table 2-36: STO Timing**

| Time | Description                                                                                                                    | Value        |
|------|--------------------------------------------------------------------------------------------------------------------------------|--------------|
| T1   | STO Delay Time (STO input active to motor power off)                                                                           | 450-550 msec |
| T2   | STO deactivated to motor power on (the software is typically configured so that the motor does not automatically re-energize). | < 1 msec     |
| T3   | Diagnostic Test Delay Time                                                                                                     | 550-610 msec |

**Figure 2-15: STO Timing**



The software is typically configured to execute a controlled stop when the STO state is first detected. If power is reapplied to the STO inputs before the STO Delay Time, an STO hardware shutdown will not occur but a software stop may, depending on the width of the STO pulse. The controller will ignore STO active pulses shorter in length than the [StoPulseFilter parameter](#) setting.

## 2.7. HyperWire Interface

HyperWire cables can be safely connected to or disconnected from a HyperWire port while the PC and/or drive is powered on. However, any changes to the HyperWire network topology will disrupt communication and you must reset the controller to re-establish communication.



**WARNING:** Do not connect or disconnect HyperWire cables while you are loading firmware or damage to the drives may occur.

**Table 2-37: HyperWire Card Part Number**

| Part Number    | Description                          |
|----------------|--------------------------------------|
| HYPERWIRE-PCIE | HyperWire adapter, PCIe x4 interface |

**Table 2-38: HyperWire Cable Part Numbers**

| Part Number        | Description                             |
|--------------------|-----------------------------------------|
| HYPERWIRE-AO10-5   | HyperWire cable, active optical, 0.5 m  |
| HYPERWIRE-AO10-10  | HyperWire cable, active optical, 1.0 m  |
| HYPERWIRE-AO10-30  | HyperWire cable, active optical, 3.0 m  |
| HYPERWIRE-AO10-50  | HyperWire cable, active optical, 5.0 m  |
| HYPERWIRE-AO10-200 | HyperWire cable, active optical, 20.0 m |

## 2.8. Maximum Energy Storage

Regeneration occurs during deceleration as mechanical energy is converted to electrical energy and is stored in the internal power supply capacitors, which can cause the internal bus voltage to increase. The amount of energy that could be regenerated by the drive from the system should not exceed the maximum energy storage that the drive can safely absorb.

Use Equation 1 to calculate the stored mechanical energy for either rotary or linear axes. For multiple axes, add the energy contribution for each axis that decelerates simultaneously.

### Equation 1:

Calculate the kinetic energy of the system. Any energy that is not lost to the system could be regenerated to the DC bus.

$$E_M = [1/2] [J_M + J_L] \omega_M^2 \quad ; \text{ rotary motors}$$

$$E_M = [1/2] [M_M + M_L] v_M^2 \quad ; \text{ linear motors}$$

Where:

- $J_M$  = rotor inertia ( $\text{kg} \cdot \text{m}^2$ )
- $J_L$  = load inertia ( $\text{kg} \cdot \text{m}^2$ )
- $\omega_M$  = motor speed before deceleration (rad/s)
- $M_M$  = forcer mass (kg)
- $M_L$  = load mass (kg)
- $v_M$  = velocity (m/s)

### Equation 2:

The calculated sum of kinetic energy must be less than the maximum additional storage energy limits listed in [Table 2-39](#) in order to keep the internal drive voltage within safe levels. The maximum amount of energy that the drive can safely absorb depends on the drive ordering options and the bus voltage.

$$E_{Ca} = (1/2) \cdot C \cdot (V_M^2 - V_{NOM}^2)$$

Where:

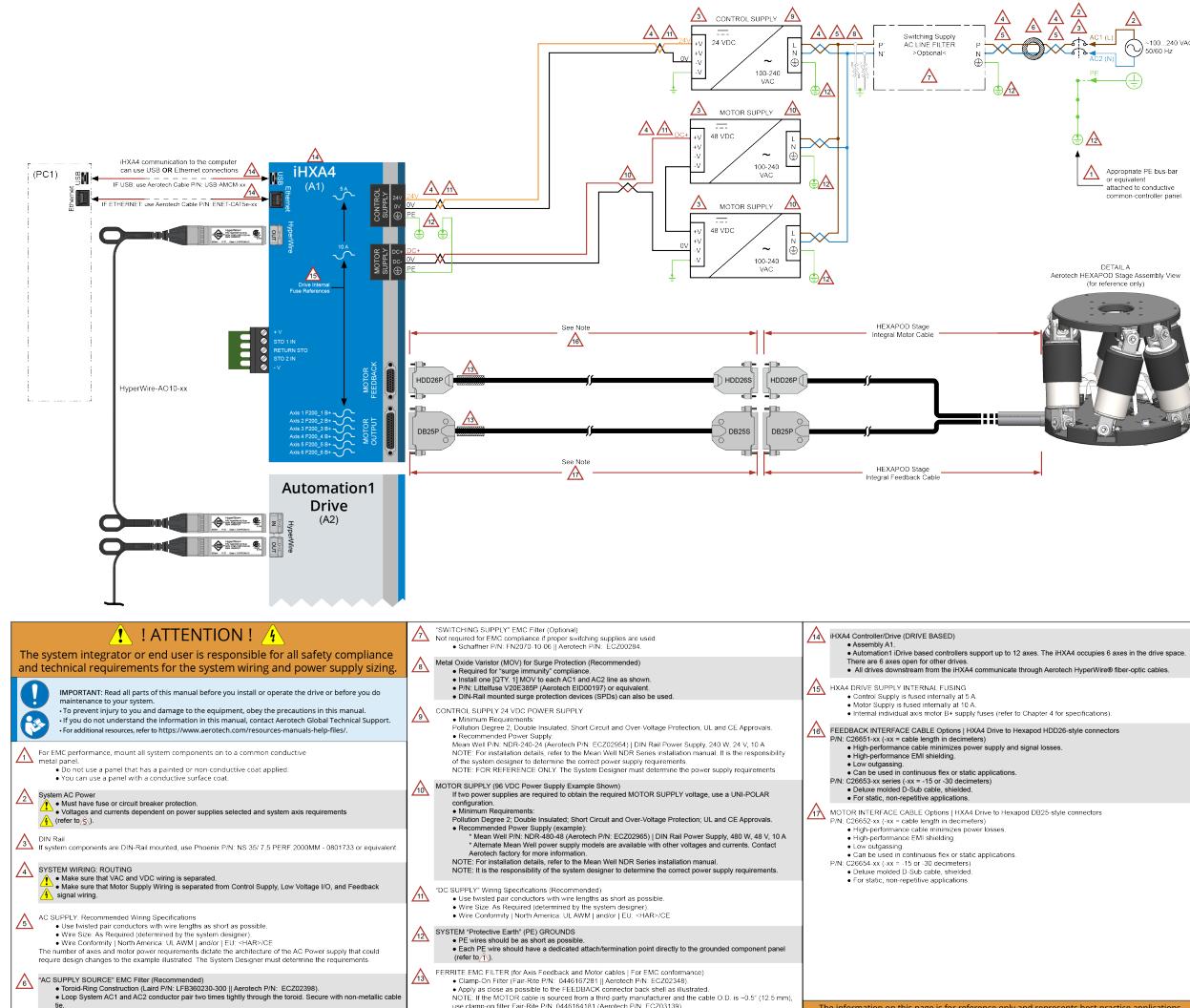
- $C$  = bus capacitor (F) [1,200  $\mu\text{F}$  or 2,400  $\mu\text{F}$ ]
- $V_M$  = maximum bus overvoltage (V) [380 V]
- $V_{NOM}$  = nominal bus voltage (V)

**Table 2-39: Maximum Energy that can Safely be Absorbed During Regeneration**

| Internal Capacitance | Nominal Bus Voltage | Maximum Additional Energy |
|----------------------|---------------------|---------------------------|
| 223 $\mu\text{F}$    | 96 VDC              | 0.09 J                    |

## 2.9. Industrial Ethernet (iHXA4 Only)

The controller is equipped with 100BASE-TX Industrial Ethernet ports.




**IMPORTANT:** Industrial Ethernet is only available on the iHXA4.

- For the location of the ports, refer to [Figure 1-1](#).
- For cable part numbers, refer to [Table 3-1](#).
- For more information, refer to [Automation1 Help](#).

## 2.10. System Interconnection

Figure 2-16: iHXA4 Recommended System Connections for a Drive-Based Controller





## 2.11. PC Configuration and Operation Information

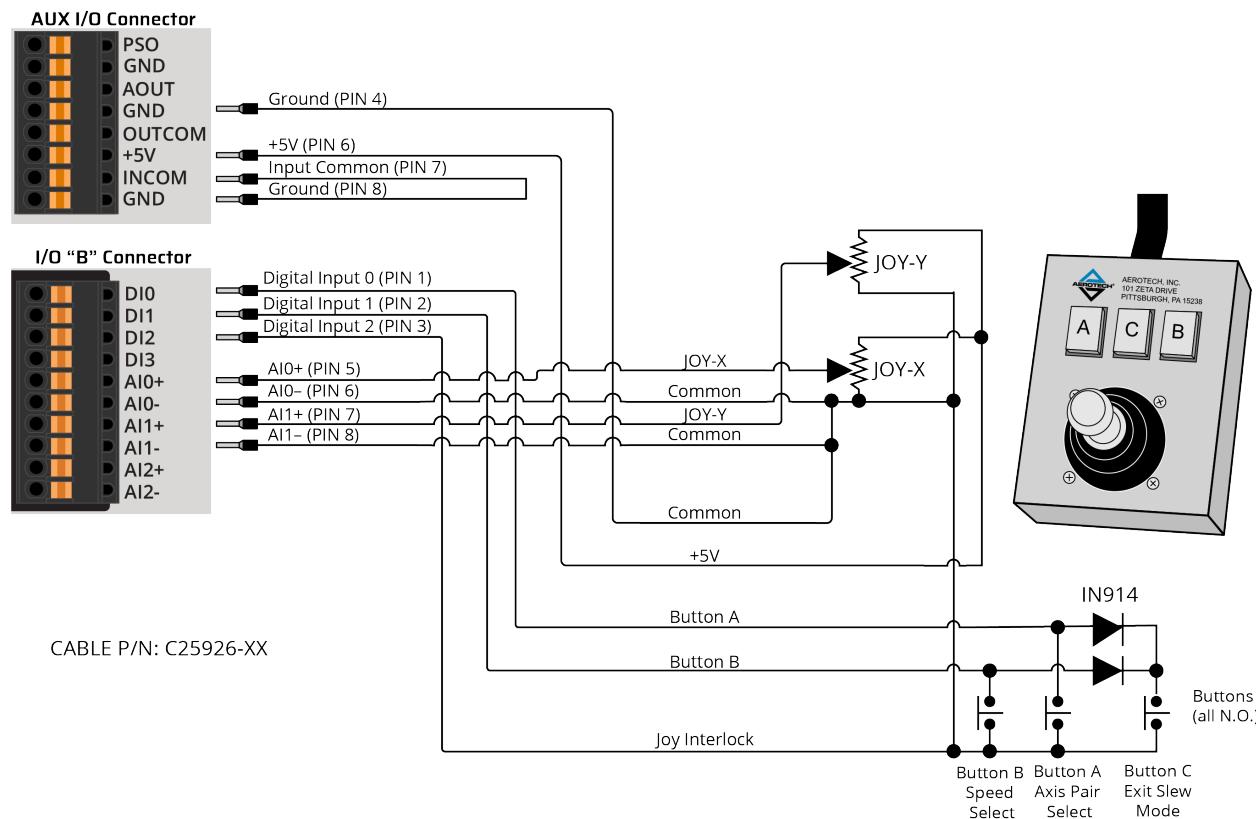
For more information about hardware requirements, PC configuration, programming, system operation, and utilities, refer to [Automation1 Help](#).

*This page intentionally left blank.*

## Chapter 3: Cables and Accessories

Table 3-1: Standard Interconnection Cables

| Cable Part #                     | Description                                              |
|----------------------------------|----------------------------------------------------------|
| ENET-CAT5e-xx <sup>(1, 2)</sup>  | Ethernet CAT5e Cable                                     |
| USB-AMCM-xx <sup>(1, 2, 3)</sup> | USB Cable A-Male to C-Male                               |
| HyperWire                        | Refer to <a href="#">Section 2.7</a> .                   |
| Joystick                         | Refer to <a href="#">Section 3.1. Joystick Interface</a> |


(1) The "-xx" indicates length in decimeters.  
(2) iHXA4 Only  
(3) Make sure that you are using a shielded USB-C cable that is designed for data transfer.

### 3.1. Joystick Interface

Aerotech Multi-Axis Joystick (NEMA12 (IP54) rated) is powered from 5 V and has a nominal 2.5 V output in the center detent position. Three buttons are used to select axis pairs and speed ranges. An optional interlock signal is used to indicate to the controller that the joystick is present. Joystick control will not activate unless the joystick is in the center location. Third party devices can be used provided they produce a symmetric output voltage within the range of -10 V to +10 V.

Connecting joystick with an Aerotech cable, all Aerotech cables are labeled to identify the connector and connections. The joystick parameters must be set to match the analog and digital I/O connections. Refer to Automation1 Help for programming information about how to change [joystick parameters](#).

**Figure 3-1: Two Axis Joystick Interface**



## Chapter 4: Maintenance



**IMPORTANT:** For your own safety and for the safety of the equipment:

- Do not remove the cover of the iHXA4/HXA4.
- Do not attempt to access the internal components.

A fuse that needs to be replaced indicates that there is a more serious problem with the system or setup. Contact Global Technical Support for assistance.



**DANGER:** If you must remove the covers and access any internal components be aware of the risk of electric shock.

1. Disconnect the Mains power connection.
2. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.
3. All tests must be done by an approved service technician. Voltages inside the controller and at the input and output power connections can kill you.

**Table 4-1: LED Description**

| LED    | Color                  | Description                                                                                                                                                         |
|--------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PWR    | GREEN                  | The drive is powered on.                                                                                                                                            |
|        | RED <sup>(1)</sup>     | The light will turn red when power is first applied, a communication problem occurs, or a drive reset is initiated. It will remain red during drive initialization. |
| EN/FLT | GREEN                  | Any axis is Enabled.                                                                                                                                                |
|        | RED                    | Any axis is in a Fault Condition.                                                                                                                                   |
|        | GREEN/RED (alternates) | Any axis is Enabled in a Fault Condition.<br>or<br>The light is configured to blink for setup.                                                                      |

**Table 4-2: Troubleshooting**

| Symptom          | Possible Cause and Solution                                                                                                                                                           |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Communication | Make sure the power LED is illuminated (this indicates that power is present).<br>Make sure that all communication cables (HyperWire, for example) are fully inserted in their ports. |

## 4.1. Preventative Maintenance

Do an inspection of the iHXA4/HXA4 and the external wiring one time each month. It might be necessary to do more frequent inspections based on:

- The operating conditions of the system.
- How you use the system.

**Table 4-3: Preventative Maintenance**

| Check                                                                                                                                                                | Action to be Taken                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Examine the chassis for hardware and parts that are damaged or loose.<br>It is not necessary to do an internal inspection unless you think internal damage occurred. | Repair all damaged parts.                                                                                                               |
| Do an inspection of the cooling vents.                                                                                                                               | Remove all material that collected in the vents.                                                                                        |
| Examine the work area to make sure there are no fluids and no electrically conductive materials.                                                                     | Do not let fluids and electrically conductive material go into the chassis.                                                             |
| Examine all cables and connections to make sure they are correct.                                                                                                    | Make sure that all connections are correctly attached and not loose.<br>Replace cables that are worn.<br>Replace all broken connectors. |

## Cleaning



**DANGER:** Before you clean the iHXA4/HXA4, disconnect the electrical power from the drive.

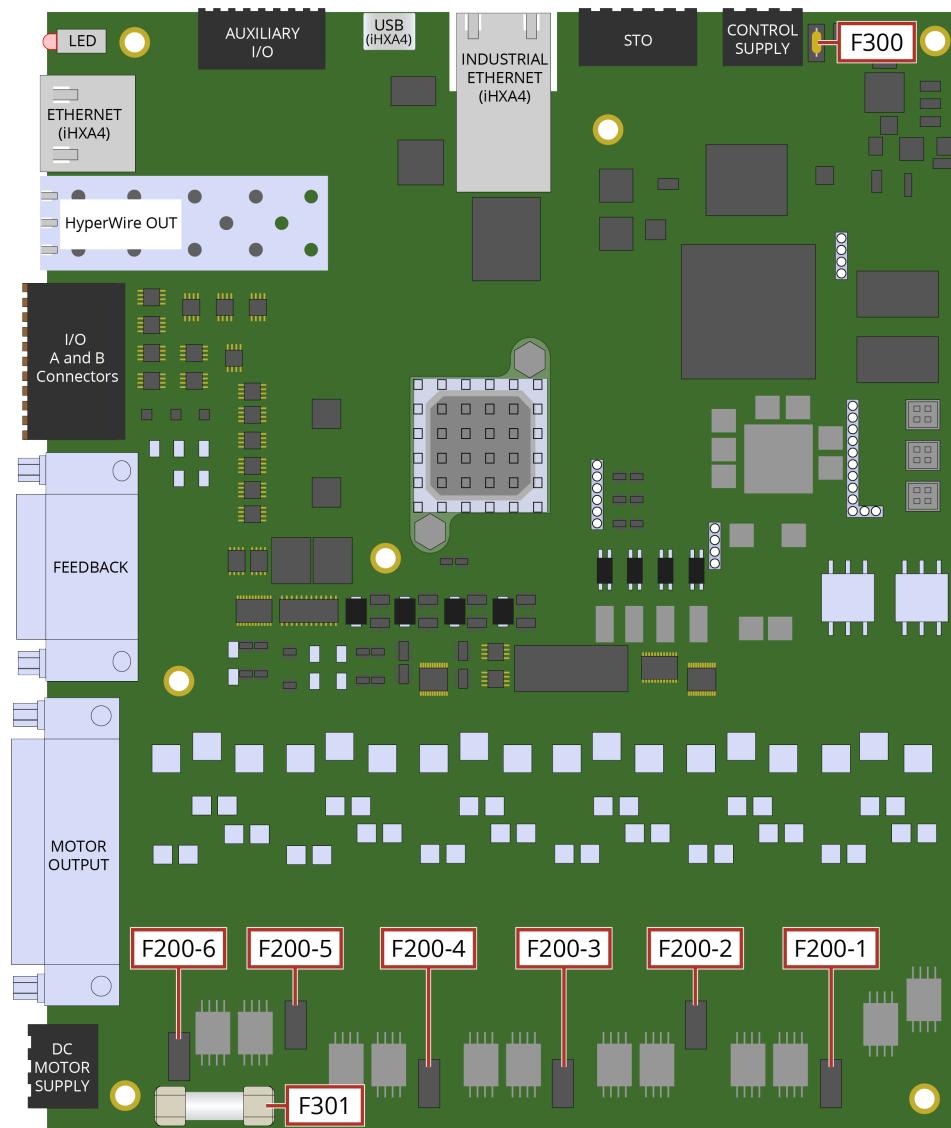
Use a clean, dry, soft cloth to clean the iHXA4/HXA4. If necessary, use a cloth that is moist with water or isopropyl alcohol. If you use a moist cloth, make sure that moisture does not go into the drive. Also make sure that it does not go onto the outer connectors and components. Internal contamination from the cleaning solution can cause corrosion and electrical short circuits.

Do not clean the labels with a cleaning solution because it might remove the label information.

## 4.2. Fuse Specifications



**WARNING:** Replace fuses only with the same type and value.


**Table 4-4: Control Board Fuse Specifications**

| Fuse                | Description                  | Size      | SCCR <sup>(1)</sup> | Aerotech P/N | Littelfuse P/N |
|---------------------|------------------------------|-----------|---------------------|--------------|----------------|
| F300 <sup>(2)</sup> | Control Power at +24 V Input | 5 A S.B.  | 35 A                | EIF01076     | 0473005.MRT1L  |
| F301                | Motor Bus Supply at DC+      | 10 A S.B. | 1500 A              | EIF01020     | 0215010.HXP    |
| F200-1              |                              |           |                     |              |                |
| F200-2              |                              |           |                     |              |                |
| F200-3              | Motor Bus Supply at axis     | 3.15 A    | 35 A                | EIF01080     | 39213150440    |
| F200-4              | (amplifier)                  | S.B.      |                     |              |                |
| F200-5              |                              |           |                     |              |                |
| F200-6              |                              |           |                     |              |                |

(1) Short circuit current rating

(2) F300 is soldered into the PCB and is not user replaceable.

**Figure 4-1: Fuse Locations on the iHXA4/HXA4 Control Board**



*This page intentionally left blank.*

## Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

### Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website ([www.aerotech.com](http://www.aerotech.com)). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit [Global Technical Support Portal](#) for the location of your nearest Aerotech Service center.

### Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

**Fixed Fee Repairs** - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

**All Other Repairs** - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

### Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

### On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

### On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

### Service Locations

<https://www.aerotech.com/contact-sales.aspx?mapState=showMap>

#### USA, CANADA, MEXICO

Aerotech, Inc.  
Global Headquarters

#### CHINA

Aerotech China  
Full-Service Subsidiary

#### GERMANY

Aerotech Germany  
Full-Service Subsidiary

#### TAIWAN

Aerotech Taiwan  
Full-Service Subsidiary

#### UNITED KINGDOM

Aerotech United Kingdom  
Full-Service Subsidiary

## Appendix B: Revision History

| Revision | Description                                                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.01     | Updated: <ul style="list-style-type: none"><li>• <a href="#">EU Declaration of Conformity (Page 8)</a></li><li>• Feature Summary (<a href="#">Section 1.1.</a>)</li></ul> |
| 1.00     | New Manual                                                                                                                                                                |

*This page intentionally left blank.*

## Index

|                                                               |      | D                                                        |
|---------------------------------------------------------------|------|----------------------------------------------------------|
| #                                                             |      | Declaration of Conformity 8-9                            |
| 2006/42/EC                                                    | 8    | Differential Analog Input Specifications 40              |
| 2014/30/EU                                                    | 8    | Digital / Analog I/O Connectors 34                       |
| 2014/35/EU                                                    | 8,11 | Mating Connector Part Numbers 34                         |
| A                                                             |      | Digital and Analog I/O Connector A Pinout 34             |
| Agency Approvals                                              | 11   | Digital and Analog I/O Connector B Pinout 34             |
| Altitude                                                      | 25   | Digital and Analog I/O Connectors 34                     |
| Analog Inputs I/O Connector)                                  | 40   | Digital Input Specifications 35                          |
| Analog Inputs Schematic                                       | 40   | Digital Inputs (I/O B Connector) 35                      |
| Analog Output on the Auxiliary I/O Connector                  | 43   | Digital Inputs Connected to a Current Sinking Device 36  |
| Analog Output Pin (Auxiliary I/O Connector)                   | 43   | Digital Inputs Connected to a Current Sourcing Device 36 |
| Analog Output Schematic (Auxiliary I/O Connector)             | 43   | Digital Output Schematic (Auxiliary I/O Connector) 38    |
| Analog Output Specifications (Auxiliary I/O Connector)        | 43   | Digital Output Specifications 37                         |
| Aux I/O Connector Mating Connector Part Numbers               | 43   | Digital Outputs (I/O A Connector) 37                     |
| Auxiliary I/O Connector                                       | 33   | Digital Outputs Connected in Current Sinking Mode 39     |
| Analog Output                                                 | 43   | Digital Outputs Connected in Current Sourcing Mode 39    |
| Position Synchronized Output                                  | 43   | Dimensions 24                                            |
| PSO                                                           | 42   | Drawing number 13                                        |
| Auxiliary I/O Connector Pinout                                | 41   | Drive and Software Compatibility 25                      |
| Digital Input Common                                          | 42   | Drive IP Rating 23                                       |
| Digital Output Common                                         | 37   | IP20 23                                                  |
| C                                                             |      | E                                                        |
| Cables                                                        | 35   | Electrical Safety for Power Drive Systems 8-9            |
| HyperWire                                                     | 50   | Electrical Specifications 21                             |
| Cables and Accessories                                        | 57   | Conductors 21                                            |
| cables, examining                                             | 60   | Control Supply 21                                        |
| Check for fluids or electrically conductive material exposure | 60   | Insulation 21                                            |
| Cleaning                                                      | 60   | Minimum Load Inductance 21                               |
| Conducted and Radiated Emissions                              | 60   | Motor Type 21                                            |
| Conductors specifications                                     | 8-9  | Power Amplifier Bandwidth 21                             |
| connections, examining                                        | 21   | Protective Features 21                                   |
| Control Board Fuse Specifications                             | 80   | PWM Switching Frequency 21                               |
| Control Supply Connections                                    | 61   | User Power Supply Output 21                              |
| Control Supply Connector                                      | 27   | Electromagnetic Compatibility (EMC) 8                    |
| Mating Connector Part Numbers                                 | 60   | EMC/CE Compliance 31                                     |
| Pinout                                                        | 27   | Enclosure 27                                             |
| Control Supply specifications                                 | 27   | IP54 Compliant 23                                        |
| cooling vents, inspecting                                     | 21   | Environmental Specifications 25                          |
| Customer order number                                         | 60   | EU 2015/863 8                                            |
|                                                               | 13   | examining parts 60                                       |
|                                                               |      | cables 60                                                |

|                                                       |    |                                                      |    |
|-------------------------------------------------------|----|------------------------------------------------------|----|
| connections                                           | 60 | Input Power Connections                              | 27 |
| examining, dangerous fluids                           | 60 | inspecting cooling vents                             | 60 |
| examining, dangerous material                         | 60 | Inspection                                           | 60 |
|                                                       |    | Installation and Configuration                       | 27 |
|                                                       |    | Installation Overview                                | 14 |
|                                                       |    | Insulation specifications                            | 21 |
| <b>F</b>                                              |    | Introduction                                         | 17 |
| Feature Summary                                       | 19 | IP20 Drive IP Rating                                 | 23 |
| Feedback Connector                                    | 33 | IP54 Compliant Enclosure                             | 23 |
| Pinout                                                | 33 |                                                      |    |
| Figure                                                |    |                                                      |    |
| Analog Inputs Schematic                               | 40 |                                                      |    |
| Analog Output Schematic (Auxiliary I/O Connector)     | 43 | <b>J</b>                                             |    |
| Control Supply Connections                            | 27 | Joystick Interface                                   | 58 |
| Digital Inputs Connected to a Current Sinking Device  | 36 |                                                      |    |
| Digital Inputs Connected to a Current Sourcing Device | 36 | <b>K</b>                                             |    |
| Digital Output Schematic (Auxiliary I/O Connector)    | 38 | Korean Certification                                 | 10 |
| Digital Outputs Connected in Current Sinking Mode     | 39 |                                                      |    |
| Digital Outputs Connected in Current Sourcing Mode    | 39 | <b>L</b>                                             |    |
| Dimensions                                            | 24 | Laser Firing                                         | 42 |
| Motor Supply Connections                              | 28 |                                                      |    |
| STO Timing                                            | 49 | <b>M</b>                                             |    |
| Typical STO Configuration                             | 45 | Maintenance                                          | 59 |
| fluids, dangerous                                     | 60 | material, electrically conductive                    | 60 |
| Functional Diagram                                    | 20 | Mating Connector P/N                                 |    |
| Fuse Specifications                                   | 61 | Aux I/O Connector                                    | 33 |
| Control Supply at L                                   | 61 | Control Supply Connector                             | 27 |
| Motor Supply at AC1                                   | 61 | Digital / Analog I/O Connectors                      | 34 |
|                                                       |    | Feedback Connector                                   | 32 |
|                                                       |    | STO Connector                                        | 44 |
| <b>H</b>                                              |    | Mating Connector Ratings                             |    |
| Handling                                              | 13 | Motor Supply                                         | 28 |
| Humidity                                              | 25 | Mechanical Specifications                            | 23 |
| HyperWire                                             | 50 | Minimizing Conducted, Radiated, and System Noise for |    |
| Cable Part Numbers                                    | 50 | EMC/CE Compliance                                    | 31 |
| Card Part Number                                      | 50 | Minimum Load Inductance specifications               | 21 |
|                                                       |    | Motor Connector                                      |    |
|                                                       |    | Mating Connector Part Numbers                        | 32 |
| <b>I</b>                                              |    | Motor Function Relative to STO Input State           | 48 |
| I/O Connector                                         | 40 | Motor Power Output Connector                         | 32 |
| Analog Inputs                                         | 40 | Pinout                                               | 32 |
| Digital Inputs (B Connector)                          | 35 | Motor Supply Connections                             | 28 |
| Digital Outputs                                       | 37 | Motor Supply Connector                               | 28 |
| I/O Connector A Pinout                                | 40 | Wiring Specifications                                | 28 |
| Digital Outputs                                       | 37 | Motor Supply Mating Connector Ratings                | 28 |
| I/O Connector B Pinout                                | 40 |                                                      |    |
| Digital Inputs                                        | 35 |                                                      |    |

|                                                        |    |                                                |    |
|--------------------------------------------------------|----|------------------------------------------------|----|
| Motor Type specification                               | 21 | <b>R</b>                                       |    |
| Mounting and Cooling                                   | 23 | Real-Time Clock Requirements                   | 22 |
| Mounting Hardware                                      | 23 | Revision History                               | 65 |
| Mounting Orientation                                   | 23 |                                                |    |
|                                                        |    | <b>S</b>                                       |    |
|                                                        |    | Safe Torque Off Input (STO)                    | 44 |
| <b>O</b>                                               |    | Safety Procedures and Warnings                 | 12 |
| Operation                                              | 25 | serial number                                  | 13 |
| Overview                                               | 17 | Specifications                                 |    |
|                                                        |    | Analog Output (Auxiliary I/O Connector)        | 43 |
|                                                        |    | Control Board Fuses                            | 61 |
| <b>P</b>                                               |    | Differential Analog Inputs                     | 40 |
| packing list                                           | 13 | Digital Inputs                                 | 35 |
| PC Configuration and Operation Information             | 55 | Digital Outputs                                | 37 |
| Pinout                                                 |    | Motor Supply Connector Wiring                  | 28 |
| Analog Output Pin (Auxiliary I/O Connector)            | 43 | PSO (Auxiliary I/O Connector)                  | 42 |
| Auxiliary I/O Connector                                | 41 | Unit Weight                                    | 23 |
| Control Supply Connector Wiring                        | 27 | STO                                            | 44 |
| Digital and Analog I/O Connector A                     | 34 | Connector Pinout                               | 44 |
| Digital and Analog I/O Connector B                     | 34 | Diagnostics                                    | 49 |
| Digital Input Common (Auxiliary I/O Connector)         | 35 | External Delay Timer                           | 47 |
| Digital Inputs (I/O Connector B)                       | 35 | Functional Description                         | 47 |
| Digital Output Common (Auxiliary I/O Connector)        | 37 | Mating Connector Part Numbers                  | 44 |
| Digital Outputs (I/O Connector A)                      | 37 | Motor Function Relative to the STO Input State | 48 |
| Feedback Connector                                     | 33 | Signal Delay                                   | 48 |
| I/O Connector A                                        | 40 | Standards                                      | 46 |
| I/O Connector B                                        | 40 | Standards Data                                 | 46 |
| Input Common                                           | 35 | Startup Validation Testing                     | 48 |
| Inputs (digital)                                       | 35 | Timing                                         | 49 |
| Motor Power Output Connector                           | 32 | Typical Configuration                          | 45 |
| Output Common                                          | 37 | Storage                                        | 13 |
| Outputs (digital)                                      | 37 | System part number                             | 13 |
| PSO Pins                                               | 42 | System Power Requirements                      | 22 |
| STO Connector                                          | 44 |                                                |    |
| Pollution                                              | 25 |                                                |    |
| Position Synchronized Output (Auxiliary I/O Connector) | 42 | <b>T</b>                                       |    |
| Power Amplifier Bandwidth specification                | 21 | Table of Contents                              | 3  |
| Power Requirements                                     | 22 | Temperature                                    | 25 |
| Preventative Maintenance                               | 60 | Typical STO Configuration                      | 45 |
| Protective Features specifications                     | 21 |                                                |    |
| PSO (Auxiliary I/O Connector)                          | 42 |                                                |    |
| PSO Pins                                               | 42 | <b>U</b>                                       |    |
| PSO Specifications (Auxiliary I/O Connector)           | 42 | Unit Weight                                    | 23 |
| PWM Switching Frequency specifications                 | 21 | Use                                            | 25 |

User Power Supply Output specification 21

**W**

Warranty and Field Service 63