

Automation1 SI4 Stepper Controller

HARDWARE MANUAL

Revision 1.10

GLOBAL TECHNICAL SUPPORT

Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2020-2024, Aerotech, Inc., All rights reserved.

Table of Contents

Auto	omation1 SI4 Stepper Controller	
	Table of Contents	
	List of Figures	
	List of Tables EU Declaration of Conformity	:
	UKCA Declaration of Conformity	
	Korean Certification	
	Safety Procedures and Warnings	
	Handling and Storage	
	Installation Overview	12
Char	pter 1: SI4 Overview	15
•	1.1. Feature Summary	
	1.2. Ordering Options	
	1.3. Functional Block Diagram	18
	1.4. Electrical Specifications	
	1.5. Mechanical Specifications	
	1.5.1. Mounting and Cooling	
	1.5.2. Dimensions	
	1.5.3. DIN Rail Mounting 1.5.4. OEM Mounting	
	1.6. Environmental Specifications	
	1.7. Drive and Software Compatibility	
Ol	· · · ·	
Cnap	pter 2: Installation and Configuration	21
	2.1. Input Power Connections	
	2.1.1. Control Supply Connector 2.1.2. Minimizing Noise for EMC/CE Compliance	
	2.1.2. Will infilizing Noise for ENG/CE compliance	
	2.2.1. Stepper Clock and Stepper Direction Signals	
	2.2.2. End of Travel Limits	32
	2.2.2.1. End of Travel Limit Phasing	
	2.2.3. Amplifier Fault Inputs	
	2.2.4. Amplifier Enable Output	35
	2.2.5. Primary Encoder Inputs	36
	2.2.5.1. Square Wave Encoder	
	2.2.5.2. Absolute Encoder	
	2.2.5.4. Stepper Motor Phasing	
	2.3. Digital I/O Connector	
	2.3.1. Digital Outputs	
	2.3.2. Digital Inputs	45
	2.3.3. High-Speed User Input	47
	2.4. HyperWire Interface	
	2.5. System Interconnection	
	2.6. PC Configuration and Operation Information	50
Chap	pter 3: Maintenance	51
	3.1. Preventative Maintenance	52
Appe	endix A: Warranty and Field Service	53
	endix B: Revision History	
Inde		57
IDOE.	X	5/

List of Figures

Figure 1-1:	SI4 Stepper Controller	15
Figure 1-2:	SI4-OEM Stepper Controller	16
Figure 1-3:	Functional Diagram	18
Figure 1-4:	Dimensions [-2P1 (Standard 2-Axis)]	20
Figure 1-5:	Dimensions [-4P1 (Standard 4-Axis)]	21
Figure 1-6:	Dimensions [-2P2 (OEM 2-Axis)]	22
Figure 1-7:	Dimensions [-4P2 (OEM 4-Axis)]	23
Figure 1-8:	Din Rail Clip Dimensions	24
Figure 2-1:	Control Supply Connections	27
Figure 2-2:	Stepper Clock and Stepper Direction Timing	30
Figure 2-3:	Stepper Clock and Stepper Direction Output Schematic	31
Figure 2-4:	End of Travel Limit Input Connections	32
Figure 2-5:	End of Travel Limit Input Schematic	32
Figure 2-6:	End of Travel Limit Input Diagnostic Display	33
Figure 2-7:	Fault Input Schematic	34
Figure 2-8:	Amplifier Enable Output Schematic	35
Figure 2-9:	Square Wave Encoder Schematic (Axis Connector)	37
Figure 2-10:	Absolute Encoder Schematic (Axis Connector)	38
Figure 2-11:	Encoder Phasing Reference Diagram (Standard)	39
Figure 2-12:	Position Feedback in the Diagnostic Display	39
Figure 2-13:	Positive Motor Direction	40
Figure 2-14:	Digital Outputs Schematic	43
Figure 2-15:	Digital Outputs Connected in Current Sourcing Mode	44
Figure 2-16:	Digital Outputs Connected in Current Sinking Mode	44
Figure 2-17:	Digital Inputs Schematic	45
Figure 2-18:	Digital Inputs Connected to Current Sourcing (PNP) Devices	46
Figure 2-19:	Digital Inputs Connected to Current Sinking (NPN) Devices	46
Figure 2-20:	High-Speed Input	47
Figure 2-21:	Recommended System Connections	49

List of Tables

Table 1-1:	Example Order and Ordering Options	17
Table 1-2:	Electrical Specifications	18
Table 1-3:	Mounting Specifications	19
Table 1-4:	Mounting Parts	24
Table 1-5:	OEM Mounting Parts	25
Table 1-6:	Environmental Specifications	26
Table 1-7:	Drive and Software Compatibility	26
Table 2-1:	Control Supply Connector Pinout	27
Table 2-2:	Control Supply Mating Connector Ratings	27
Table 2-3:	Axis Connector Pinout	29
Table 2-4:	Axis Mating Connector Ratings	29
Table 2-5:	Clock and Direction Pins on the Axis Connector	30
Table 2-6:	Stepper Clock and Stepper Direction Signal Output Specifications	30
Table 2-7:	Stepper Direction Signal Output Polarity	30
Table 2-8:	End of Travel Limit Pins on the Axis Connector	32
Table 2-9:	Amplifier Fault Input Specifications	34
Table 2-10:	Amplifier Enable Connector Pin on the Axis Connector	35
Table 2-11:	Amplifier Enable Output Specifications	35
Table 2-12:	Primary Encoder Pins on the Axis Connector	36
Table 2-13:	Square Wave Encoder Specifications	37
Table 2-14:	Absolute Encoder Specifications	38
Table 2-15:	Digital I/O Connector Pinout	41
Table 2-16:	Digital I/O Mating Connector Ratings [-EB1]	41
Table 2-17:	Digital Output Specifications	42
Table 2-18:	Digital Output Pins on Digital I/O Connector	42
Table 2-19:	Digital Input Specifications	45
Table 2-20:	Digital Input Pins on the Digital I/O Connector	45
Table 2-21:	High-Speed Input Specifications	47
Table 2-22:	High-Speed Input Pins on the Digital I/O Connector	47
Table 2-23:	HyperWire Card Part Number	48
Table 2-24:	HyperWire Cable Part Numbers	48
Table 2-25:	LED Description	51
Table 2-26:	Troubleshooting	51
Table 2-27:	Preventative Maintenance	52

EU Declaration of Conformity

ManufacturerAerotech, Inc.Address101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

Product SI4
Model/Types AII

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

2014/30/EU Electromagnetic Compatibility (EMC)
EU 2015/863 Directive, Restricted Substances (RoHS 3)

and has been designed to be in conformity with the applicable requirements of the following standard(s) when installed and used in accordance with the manufacturer's supplied installation instructions.

EN 55011:2000/A2:2003 Conducted and Radiated Emissions EN 55022:1998 Conducted and Radiated Emissions

Authorized Representative:

/ Norbert Ludwig

Managing Director Aerotech GmbH

Gustav-Weißkopf-Str. 18

90768 Fürth Germany

Engineer Verifying Compliance

Clas Robrason / Alex Weibel

Aerotech, Inc. 101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

Date 5/31/2024

6

UKCA Declaration of Conformity

Manufacturer Aerotech, Inc. **Address** 101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

Product SI4 ΑII Model/Types

To which this declaration relates, meets the essential health and safety requirements and is in conformity with the relevant UK Legislation listed below:

Electromagnetic Compatibility Regulations 2016

Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Using the relevant section of the following UK Designated Standards and other normative documents when installed in accordance with the installation instructions supplied by the manufacturer.

EN 55011:2000/A2:2003 Conducted and Radiated Emissions Conducted and Radiated Emissions EN 55022:1998

Authorized Representative:

/ Simon Smith

Managing Director Aerotech Ltd

The Old Brick Kiln, Ramsdell, Tadley

Hampshire RG26 5PR

UK

Engineer Verifying

Clas Relief / Alex Weibel Compliance

Aerotech, Inc. 101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

Date 5/31/2024

Korean Certification

Registration of Broadcasting and Communication Equipments

It is verified that the foregoing equipment has been registered under the Clause 3, Article 58-2 of the radio Waves Act.

Safety Procedures and Warnings

IMPORTANT: This manual tells you how to carefully and correctly use and operate the controller.

 Read all parts of this manual before you install or operate the controller or before you do maintenance to your system.

 To prevent injury to you and damage to the equipment, obey the precautions in this manual.

All specifications and illustrations are for reference only and were complete and accurate
as of the release of this manual. To find the newest information about this product, refer to
www.aerotech.com.

If you do not understand the information in this manual, contact Aerotech Global Technical Support.

IMPORTANT: This product has been designed for light industrial manufacturing or laboratory environments. If the product is used in a manner not specified by the manufacturer:

- The protection provided by the equipment could be impaired.
- The life expectancy of the product could be decreased.

Safety notes and symbols are placed throughout this manual to warn you of the potential risks at the moment of the safety note or if you fail to obey the safety note.

The voltage can cause shock, burn, or death.

You are at risk of physical injury.

You could damage the controller.

A surface can be hot enough to burn you.

Your actions, the temperature of the system, or the condition of the atmosphere that surround the system could start a fire.

Components are sensitive to electrostatic discharge.

Unsecured cables could cause you to:

- trip and fall
- drag the product off of its mounting location
- damage the cable connections.

A blue circle symbol is an action or tip that you should obey. Some examples include:

9

- General tip
- Read the manual/section
- Wear protective safety equipment (eye protection, ear protection, gloves)
- If applicable, do not lift unassisted

WARNING: To prevent damage to the equipment and decrease the risk of electrical shock and injury, obey the precautions that follow.

- 1. Supply each operator with the necessary protection from live electrical circuits.
- 2. Install the necessary precautions to supply safety and protection to the operator.
- 3. Do not connect or disconnect electrical components, wires, and cables while this product is connected to a power source.

- 4. Before you connect wires to this product, disconnect the electrical power.
- 5. Make sure that all components are grounded correctly and that they obey the local electrical safety requirements.
- 6. Before you do maintenance to the equipment, disconnect the electrical power.
- 7. Make sure that all system cables are correctly attached and positioned.
- 8. Do not use the cables or the connectors to lift or move this product.
- 9. Use this product only in environments and operating conditions that are approved in this manual.
- 10. Only trained operators should operate this equipment.

Handling and Storage

Unpacking the controller

IMPORTANT: All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

Inspect the shipping container for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

Remove the packing list from the shipping container. Make sure that all the items specified on the packing list are contained within the package.


The documentation for the controller is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference. Additional information about the system is provided on the Serial and Power labels that are placed on the chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- · Drawing number
- · System part number

Handling

IMPORTANT: It is the responsibility of the customer to safely and carefully lift and move the controller.

- Refer to Section 1.5. Mechanical Specifications for dimensions and weight specifications.
- · Retain the shipping materials for future use.
- Transport or store the controller in its protective packaging.

WARNING: Electrostatic Discharge (ESD) Sensitive Components!

You could damage the power supply or drives if you fail to observe the correct ESD practices. Wear an ESD wrist strap when you handle, install, or do service to the system assembly.

Storage

Store the controller in the original shipping container. If the original packaging included ESD protective packaging, make sure to store the controller in it. The storage location must be dry, free of dust, free of vibrations, and flat.

Refer to Section 1.6. Environmental Specifications.

Installation Overview

The images that follow show the order in which to make connections and settings that are typical to the SI4. If a custom interconnect drawing was supplied with your system, that drawing is on your Storage Device and shows as a line item on your Sales Order in the Integration section.

Figure 1: Installation Connection Overview (4 Axis Shown)

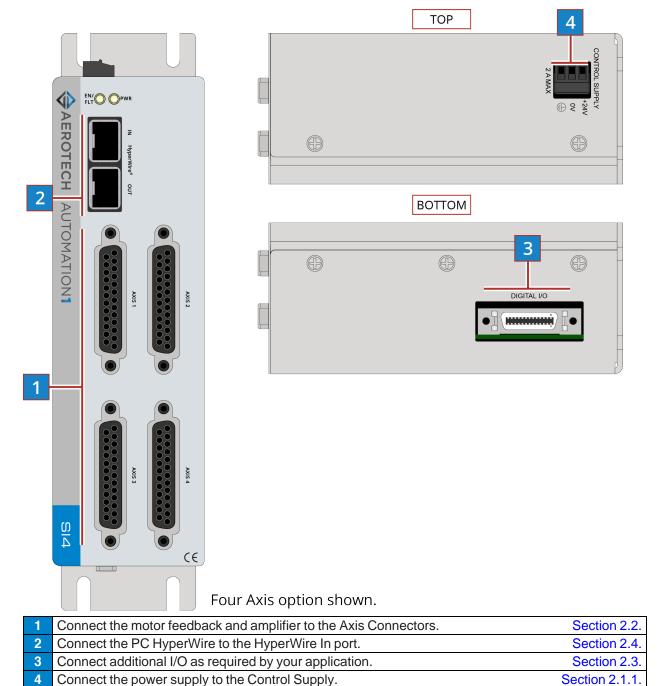
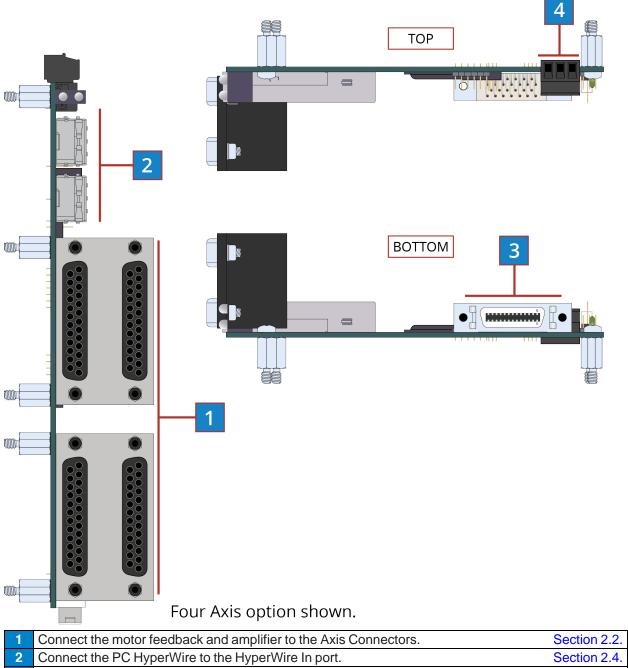



Figure 2: Installation Connection Overview (4 Axis OEM Shown)

1	Connect the motor feedback and amplifier to the Axis Connectors.	Section 2.2.
2	Connect the PC HyperWire to the HyperWire In port.	Section 2.4.
3	Connect additional I/O as required by your application.	Section 2.3.
4	Connect the power supply to the Control Supply.	Section 2.1.1.

This page intentionally left blank.

Chapter 1: SI4 Overview

The SI4 is a multi-axis digital drive based on the HyperWire communication protocol. The drive provides deterministic behavior, auto-identification, and is fully software configurable. The drive controls amplifiers which accept clock-and-direction commands.

Figure 1-1: SI4 Stepper Controller

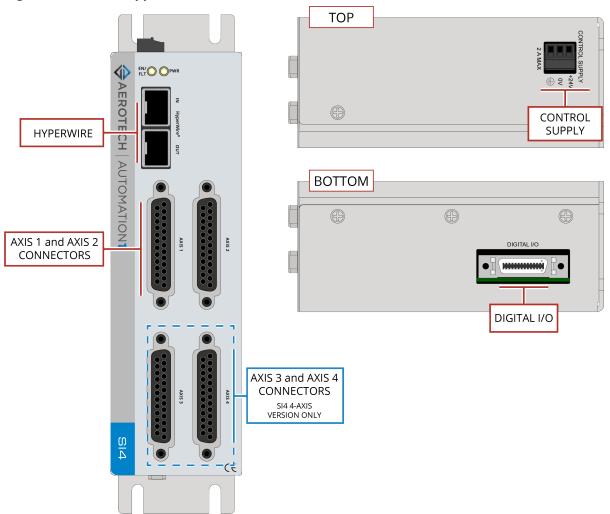
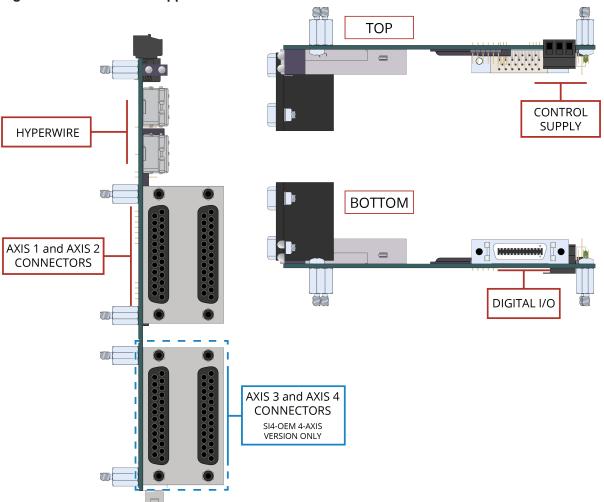
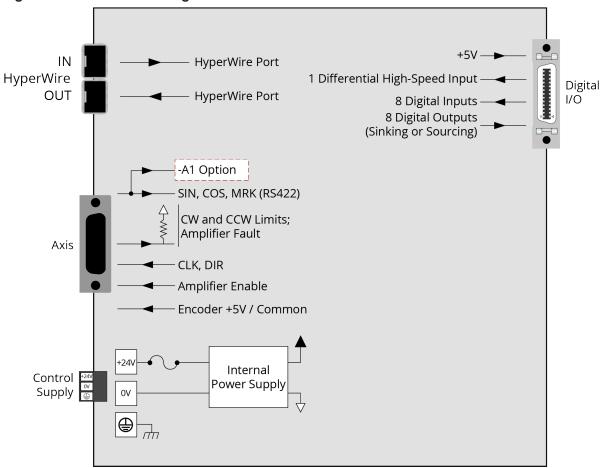



Figure 1-2: SI4-OEM Stepper Controller

1.1. Feature Summary

- 24 VDC control supply input (Section 2.1.1.)
- 20 kHz Servo Loop Update Rate
- Stepper clock and direction outputs (Section 2.2.1.)
- Single-ended and line driver square wave quadrature encoder input for position feedback (Section 2.2.5.)
- Eight digital user outputs (Section 2.3.1.)
- Nine digital user inputs
 - Eight digital inputs (Section 2.3.2.)
 - One high-speed input (Section 2.3.3.)
- Two or four HyperWire communication channels (one per axis) (Section 2.4.)

1.2. Ordering Options


Table 1-1: Example Order and Ordering Options

Example	
Automation1-SI4-2I	P1-A1
Options	
Automation1 Cont	troller
-SI4	Stepper Controller
Configuration	
-2P1	Two Axes of Control, Standard Packaging
-2P2	Two Axes of Control, OEM Packaging
-4P1	Four Axes of Control, Standard Packaging
-4P2	Four Axes of Control, OEM Packaging
Encoder (Section	2.2.5.2.)
-A0	No Absolute Encoder support
-A1	Absolute Encoder support

1.3. Functional Block Diagram

The block diagram that follows shows a summary of the connector signals.

Figure 1-3: Functional Diagram

1.4. Electrical Specifications

Table 1-2: Electrical Specifications

Description		SI4	
	Input Voltage	24 VDC	
Control Supply	Input Current	2-Axis: 2 A max, 0.45 A typical	
		4-Axis: 2 A max, 0.6 A typical	
User Power Supply Output		5 VDC (@ 500 mA)	
Modes of Operation		Stepper	
Protective Features		Control power supply under voltage	

1.5. Mechanical Specifications

1.5.1. Mounting and Cooling

The controller must be installed in an enclosed control cabinet suitable for installation of power equipment. A minimum enclosure rating of IP54 is required to comply with safety standards. Make sure that there is sufficient clearance surrounding the controller for free airflow and for the routing of cables and connections. Consideration for items such as line reactors, line filters, and motor chokes or inductance should be made during the initial cabinet design phase.

Table 1-3: Mounting Specifications

		SI4	
Customer-Supplied Enclosure		IP54 Compliant	
		For DIN Rail Mounting,	
		refer to Section 1.5.3. DIN Rail Mounting	
Weight	Standard	0.60 kg	
vveignt	OEM	0.25 kg	
Mounting Hardware	Standard	M4 [#8] screws (four locations, not included)	
Mounting Hardware	OEM	M3 screws and M3 standoffs (seven locations)	
Mounting Orientation		Vertical (typical)	
Dimensions		Refer to Section 1.5.2. Dimensions	
Minimum Clearance	Airflow	~25 mm	
Willimum Clearance	Connectors	~100 mm	
Minimum Airflow Standard		Provided by internal fan	
(over the drive) OEM		4.2 CMF (NOTE: Customer Supplied)	
Operating Temperature		Refer to Section 1.6. Environmental Specifications	
Drive IP Rating		IP20	

1.5.2. Dimensions

Figure 1-4: Dimensions [-2P1 (Standard 2-Axis)]

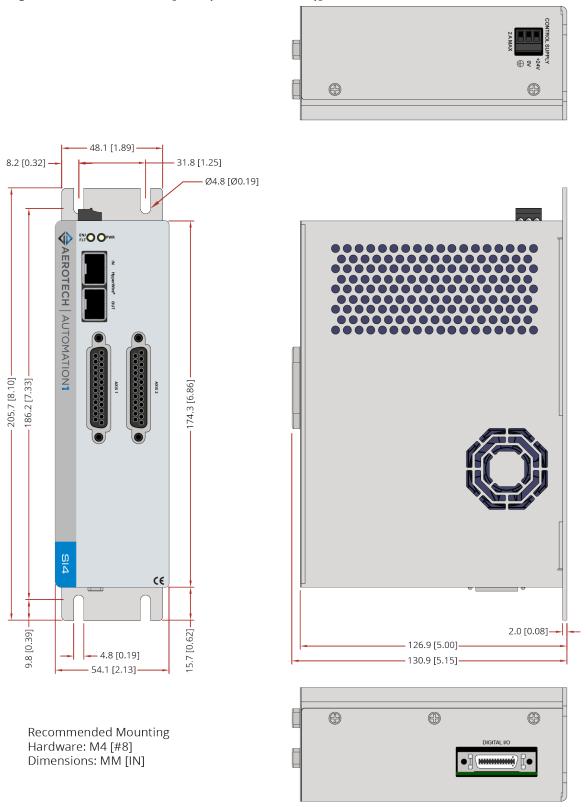


Figure 1-5: Dimensions [-4P1 (Standard 4-Axis)]

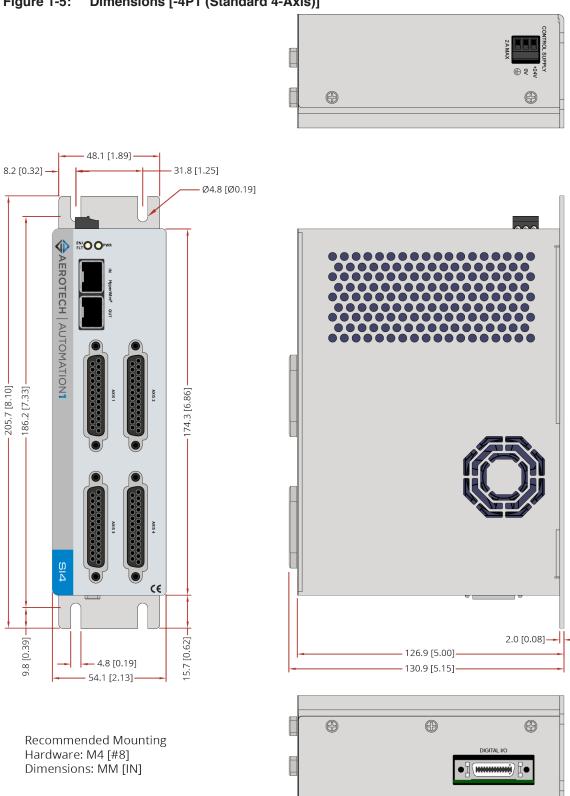
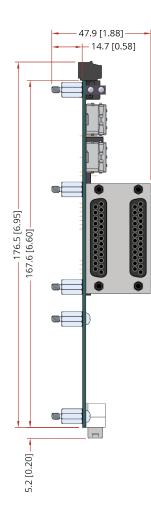



Figure 1-6: Dimensions [-2P2 (OEM 2-Axis)]

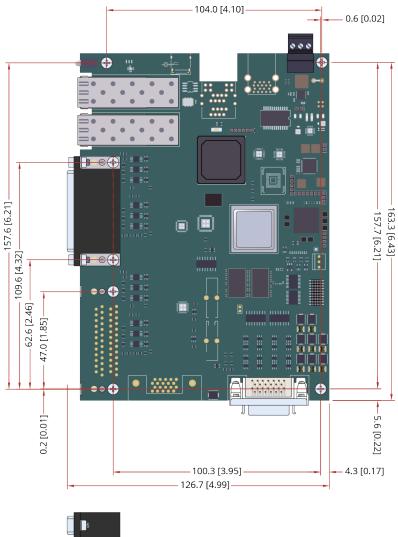
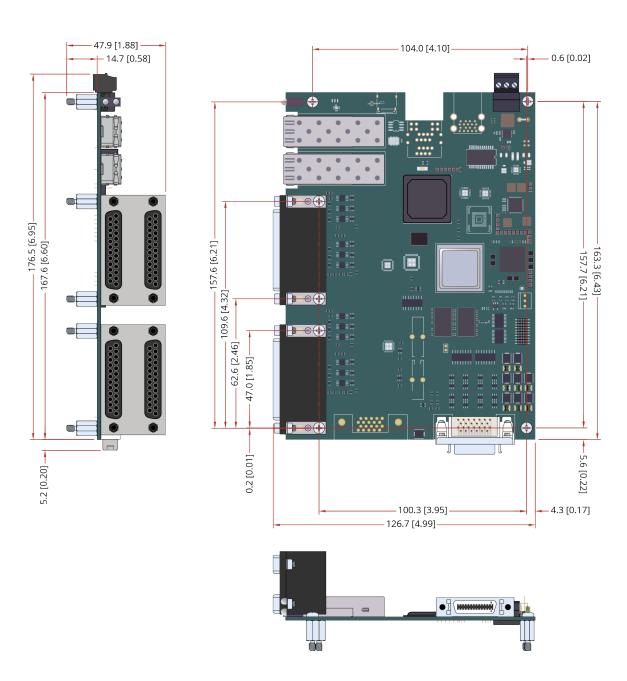
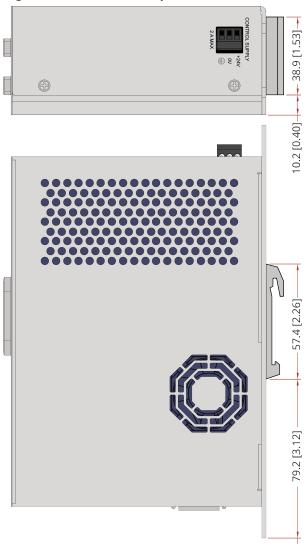



Figure 1-7: Dimensions [-4P2 (OEM 4-Axis)]

1.5.3. DIN Rail Mounting

A DIN rail can only be used with the -2P1 or -4P1 options.


DIN Rail Mounting Procedure:

- 1. Mount the DIN rail clip to the SI4. The clip and #6-32 x 1/4 flat head screws are included in the DIN rail clip kit.
- 2. Cut the DIN rail so one complete mounting hole extends beyond the last component at each end.
- 3. Secure the DIN Rail to the mounting surface with #10-32 screws spaced every six inches. NOTE: Do not install the DIN rail to the mounting surface with the components already attached.
- 4. Install all components on to the DIN rail.

Table 1-4: Mounting Parts

	Aerotech P/N
DIN Rail	EAM00914
DIN Rail Clip Kit	HyperWire-DIN

Figure 1-8: Din Rail Clip Dimensions

1.5.4. OEM Mounting

OEM Mounting Procedure:

1. Secure the seven M3 standoffs to the mounting surface with M3 hex nuts. These hex nuts are not included with the drive.

NOTE: Do not install the standoffs to the mounting surface with the drive already attached.

2. Attach the drive to the standoffs with the M3 screws. These screws are included with the drive.

Table 1-5: OEM Mounting Parts

	Aerotech P/N
M3 Threaded Hex Standoff, 10 mm length	EIH01181
M3 Philips Pan Head Screw, 8 mm length	HCY0003008

1.6. Environmental Specifications

The environmental specifications are listed below.

Table 1-6: Environmental Specifications

	•
	Operating: 0 °C to 40 °C (32 °F to 104 °F)
Temperature	Maximum Surrounding Air: 40 °C (104 °F)
	Storage: -30 °C to 85 °C (-22 °C to 185 °F)
Humidity	The maximum relative humidity is 80% for temperatures that are less
Non-condensing	than 31 °C and decreases linearly to 50% relative humidity at 40 °C.
Operating Altitude	0 m to 2,000 m (0 ft to 6,562 ft) above sea level.
Pollution	Pollution Degree 2
Poliution	Typically only nonconductive pollution occurs.
Operation	Use only indoors

1.7. Drive and Software Compatibility

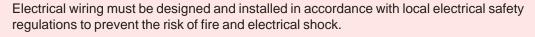
This table shows the available drives and which version of the software first supported each drive. In the **Last Software Version** column, drives that show a specific version number are not supported after that version.

Table 1-7: Drive and Software Compatibility

Drive Type	First Software Version	Last Software Version
SI4	1.2.0	Current

Chapter 2: Installation and Configuration

The sections in this chapter include details on how to set up the electrical and safety components of your system. Obey all safety warnings, including those in Safety Procedures and Warnings.


2.1. Input Power Connections

The controller has one DC input power connector for control power. For a full list of electrical specifications, refer to Section 1.4. Refer to Section 2.5. for a System Interconnection Drawing.

2.1.1. Control Supply Connector

DANGER: Shock and Fire Hazard

The Control Supply input supplies power to the communications and logic circuitry of the drive. The **+24V** input is connected to an internal fuse. For an isolated DC supply, connect **0V** to protective ground at the supply. Use twisted pair wiring to minimize radiated noise emissions (refer to Figure 2-1).

Figure 2-1: Control Supply Connections

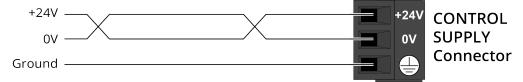


Table 2-1: Control Supply Connector Pinout

Pin	Description
	24 VDC (±10%) Control Power Input
+24 V	(2-Axis: 2 A max, 0.45 A typical;
	4-Axis: 2 A max, 0.6 A typical)
0 V	Control Power Common Input
	Protective Ground

Table 2-2: Control Supply Mating Connector Ratings

Specification		Description
Туре		3-Pin Terminal Block
Part Numbers		Aerotech: ECK02456
		Phoenix: 1839610
0	One conductor, stranded with ferrule and plastic sleeve	1822 AWG (0.250.75 mm ²)
Conductor Cross Section	Two conductors (same cross-section), stranded, twin ferrule with plastic sleeve	20 AWG (0.5 mm ²)
Tightening Torque		0.220.25 N⋅m
Conductor Insulation Strip Length		7 mm (0.25 in)
(1) Refer to the manufacturer website for additional information.		

2.1.2. Minimizing Noise for EMC/CE Compliance

IMPORTANT: The SI4 is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

To reduce electrical noise, observe the following motor feedback and input power wiring techniques.

- 1. Use shielded cable for the feedback connector. Connect the shield to the backshell at each end of the cable.
- 2. Mount drives and power supplies on a conductive panel. Keep wire-run lengths to a minimum.
- 3. Use a separate wire for each ground connection to the drive. Use the shortest possible wire length.

For typical system interconnections, refer to Section 2.5. System Interconnection.

2.2. Axis Connector

The connector pin assignment is shown in Table 2-3 with detailed connection information in the following sections.

Table 2-3: Axis Connector Pinout

Pin #	Description	In/Out/Bi	Connector
1	Reserved	N/A	
2	Amplifier Enable	Output	
3	Signal Common	Output	
4	Reserved	N/A	
5	Reserved	N/A	
6	Reserved	N/A	
7	Clockwise End of Travel Limit	Input	
8	+5 V Supply (500 mA)	Output	13
9	Primary Sine +	Input	
10	Primary Cosine +	Input	13 25 0 0 0 0 14
11	Primary Marker +	Input	
''	Absolute Data +	Bidirectional	
12	Absolute Clock +	Output	
13	Reserved	N/A	
14	Reserved	N/A	
15	Amplifier Fault	Input	
16	Stepper Clock	Output	
17	Stepper Direction	Output	
18	Reserved	N/A	
19	Reserved	N/A	1
20	Counterclockwise End of Travel Limit	Input	
21	Signal Common	Output	
22	Primary Sine -	Input	
23	Primary Cosine -	Input	
24	Primary Marker -	Input	
24	Absolute Data -	Bidirectional	
25	Absolute Clock -	Output	

Table 2-4: Axis Mating Connector Ratings

Specification	25-Pin Solder Cup	Backshell
Aerotech Part Number	ECK00101	ECK00656
Amphenol Part Number (1)	DB25P064TXLF	17E-1726-2
Maximum Wire Size	20 AWG (0.5 mm ²)	N/A
(1) Refer to the manufacturer website for additional information.		

2.2.1. Stepper Clock and Stepper Direction Signals

The SI4 uses the Stepper Clock and Stepper Direction outputs to interface to stepper motor drivers.

Table 2-5: Clock and Direction Pins on the Axis Connector

Pin#	Description	In/Out/Bi
16	Stepper Clock	Output
17	Stepper Direction	Output

Table 2-6: Stepper Clock and Stepper Direction Signal Output Specifications

Specification	Value	
Output Voltage	5V TTL	
Maximum Output Frequency	25 MHz	
Maximum Source / Sink Current	±20 mA	
Clock Default State	Logic Low (0 V)	
Direction Default State	Logic Low (0 V)	
Maximum Clock Pulse Width	25 µs	
Minimum Clock Pulse Width	20 ns	

To change the direction of the rotation of the motor, reverse the polarity of one of the phases. Reverse the A and A-N or B and B-N wires at the stepper motor driver.

Table 2-7: Stepper Direction Signal Output Polarity

Specification	Value	
Negative / CCW Direction	Logic Low (0 V)	
Positive / CW Direction	Logic High (+5 V)	

Figure 2-2: Stepper Clock and Stepper Direction Timing

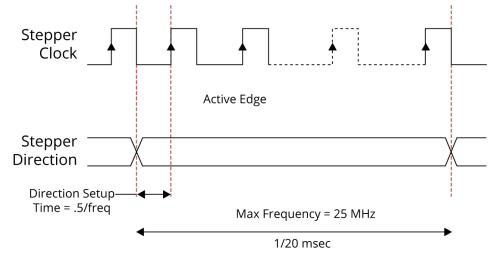
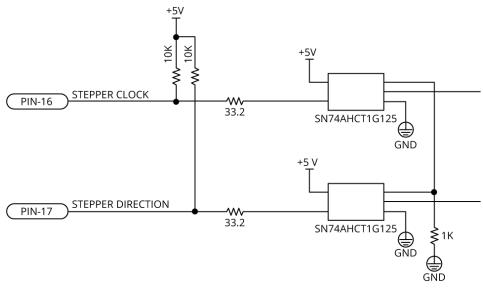



Figure 2-3: Stepper Clock and Stepper Direction Output Schematic

2.2.2. End of Travel Limits

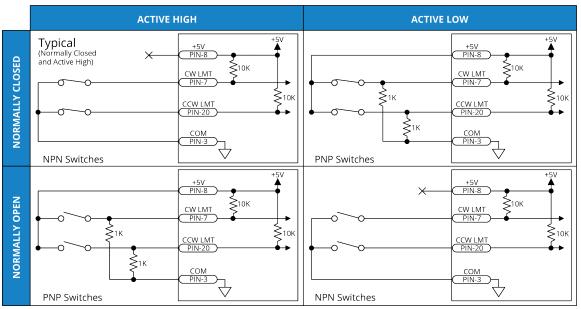
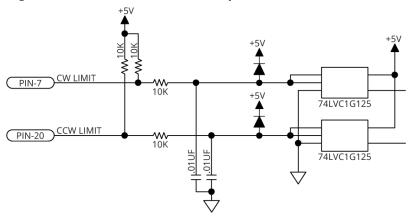
End of Travel (EOT) limits are required to define the end of the physical travel on linear axes. Positive or clockwise motion is stopped by the clockwise (CW) end of travel limit input. Negative or counterclockwise motion is stopped by the counterclockwise (CCW) end of travel limit input. All of the end-of-travel limit inputs accept 0-24 VDC level signals. Limit directions are relative to the encoder polarity in the diagnostics display (refer to Figure 1-1).

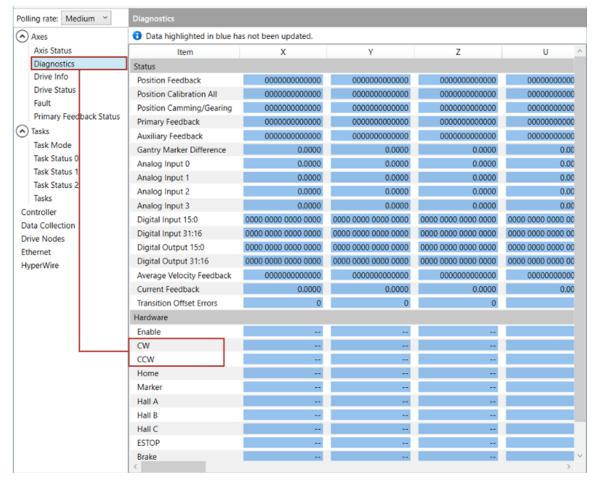
Table 2-8: End of Travel Limit Pins on the Axis Connector

Pin #	Description	In/Out/Bi
3	Signal Common	Output
7	Clockwise End of Travel Limit	Input
8	+5 V Supply (500 mA)	Output
20	Counterclockwise End of Travel Limit	Input

The active state (High/Low) of the EOT limits is software selectable (by the EndOfTravelLimitSetup axis parameter). Figure 2-4 shows the possible wiring configurations for normally-open and normally-closed switches and the parameter setting to use for each configuration. Use NPN-type normally-closed limit switches (Active High) to provide fail-safe behavior in the event of an open circuit.

Figure 2-4: End of Travel Limit Input Connections

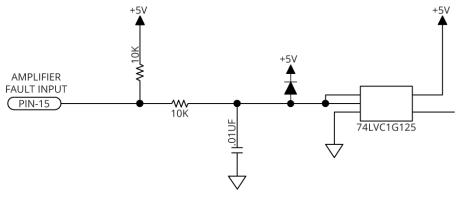




Figure 2-5: End of Travel Limit Input Schematic

2.2.2.1. End of Travel Limit Phasing

If the EOT limits are reversed, you will be able to move further into a limit but be unable to move out. To correct this, swap the connections to the CW and CCW inputs at the Feedback connector or swap the CW and CCW limit functionality in the software using the EndOfTravelLimitSetup parameter. View the logic level of the EOT limit inputs in the Diagnostics display (shown in Figure 2-6).

Figure 2-6: End of Travel Limit Input Diagnostic Display


2.2.3. Amplifier Fault Inputs

Use the amplifier fault input to monitor the stepper driver status. Use the FaultSetup parameter to configure the active polarity. The use of this input is optional.

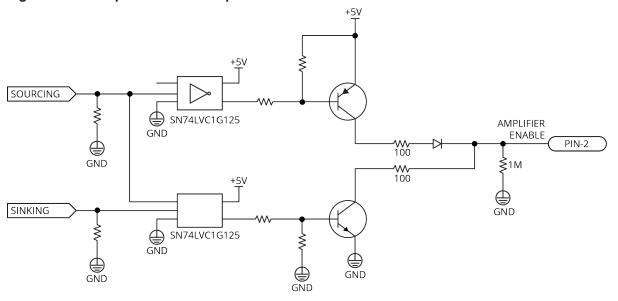
Table 2-9: Amplifier Fault Input Specifications

Specification	Value
Maximum Input Voltage	5V

Figure 2-7: Fault Input Schematic

2.2.4. Amplifier Enable Output

Use the AmplifierEnableOutputMode parameter to set the enabled state of the amplifier enable output to sinking or sourcing. The default state is sourcing. However, during a drive reset and when the amplifier is disabled, the amplifier enable output is high-impedance. To ensure a fail-safe state, you must install external pull resistors on the output to pull it to a safe state when the amplifier is disabled.


 Table 2-10:
 Amplifier Enable Connector Pin on the Axis Connector

Pin#	Description	In/Out/Bi
2	Amplifier Enable	Output

Table 2-11: Amplifier Enable Output Specifications

Specification	Value	
High-Level Output Voltage	4.4 V	
Output Current Source / Sink	10 mA	

Figure 2-8: Amplifier Enable Output Schematic

2.2.5. Primary Encoder Inputs

The primary encoder inputs are accessible through the Axis connector. Use the PrimaryFeedbackType parameter to configure the controller to accept an encoder signal type.

Square Wave encoder signals: Section 2.2.5.1.

Absolute encoder signals: Section 2.2.5.2.

Refer to Section 2.2.5.3. for encoder feedback phasing.

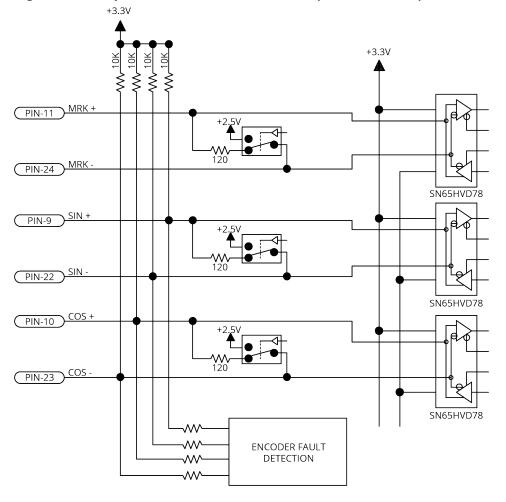
IMPORTANT: Physically isolate the encoder wiring from motor, AC power, and all other power wiring

Table 2-12: Primary Encoder Pins on the Axis Connector

Pin #	Description	In/Out/Bi
8	+5 V Supply (500 mA)	Output
9	Primary Sine +	Input
10	Primary Cosine +	Input
11	Primary Marker +	Input
11	Absolute Data +	Bidirectional
12	Absolute Clock +	Output
21	Signal Common	Output
22	Primary Sine -	Input
23	Primary Cosine -	Input
24	Primary Marker -	Input
24	Absolute Data -	Bidirectional
25	Absolute Clock -	Output

2.2.5.1. Square Wave Encoder

The SI4 supports both single-ended and differential encoder feedback signals.

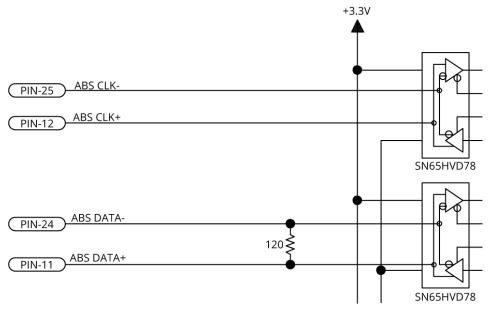

For single-ended feedback configuration, use the Sine +, Cosine +, and Marker + inputs. Do not connect the Sine -, Cosine - and Marker - inputs. Set the FeedbackSetup parameter to configure the hardware for single-ended encoder feedback devices.

For differential feedback configuration, the SI4 accepts RS-422 square wave encoder signals. The controller will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-13: Square Wave Encoder Specifications

Specification	Value
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)
x4 Quadrature Decoding	40 million counts/sec

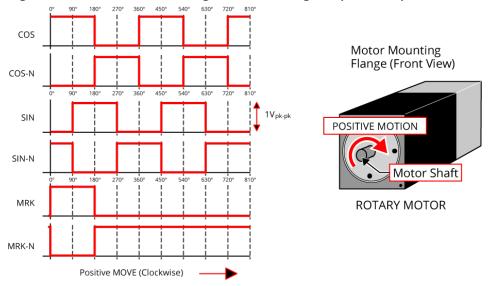
Figure 2-9: Square Wave Encoder Schematic (Axis Connector)


2.2.5.2. Absolute Encoder

The SI4 retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. Refer to Figure 2-10 for the serial data stream interface. Refer to the Help file for information on how to set up your EnDat, BiSS, or SSI absolute encoder parameters.

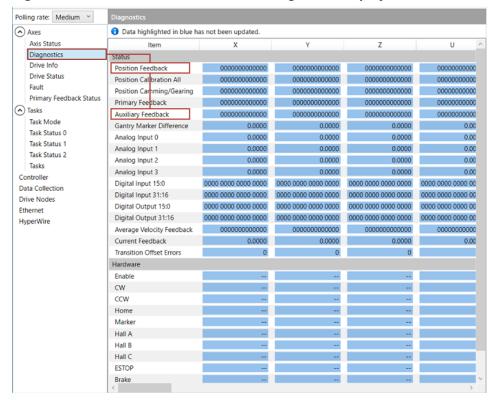
Table 2-14: Absolute Encoder Specifications

Specification	Value
Sampling Frequency	20 kHz
Maximum Reading Speed	Refer to your encoder data sheet.


Figure 2-10: Absolute Encoder Schematic (Axis Connector)

2.2.5.3. Encoder Phasing

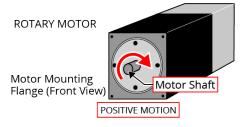
Incorrect encoder polarity will cause the system to fault when enabled or when a move command is issued. Figure 2-11 illustrates the proper encoder phasing for clockwise motor rotation (or positive forcer movement for linear motors). To verify, move the motor by hand in the CW (positive) direction while observing the position of the encoder in the diagnostics display (see Figure 2-12).


Figure 2-11: Encoder Phasing Reference Diagram (Standard)

IMPORTANT: Encoder manufacturers may refer to the encoder signals as A, B, and Z. The proper phase relationship between signals is shown in Figure 2-11.

Figure 2-12: Position Feedback in the Diagnostic Display

2.2.5.4. Stepper Motor Phasing


A stepper motor can be run with or without an encoder.

Without an Encoder: You do not need to phase the motor.

With an Encoder: Because the end of travel (EOT) limit inputs are relative to motor rotation, it is important to phase the motor.

Run a positive motion command. The motor is phased correctly if there is a positive scaling factor (determined by the ServoLoopSetup parameter) and the motor moves in a clockwise direction when you view the motor from the front mounting flange (Figure 2-13). If the motor moves in a counterclockwise direction, reverse the motor leads and re-run the command. After the motor has been phased, if you want to change the direction of positive motion, use the ReverseMotionDirection parameter.

Figure 2-13: Positive Motor Direction

For Aerotech-supplied systems, the motor and encoder are correctly configured and connection adjustments are not necessary.

2.3. Digital I/O Connector

This connector has two groups of four digital, optically-isolated outputs, two groups of four digital, optically-isolated inputs, and one differential high-speed user input.

Table 2-15: Digital I/O Connector Pinout

Pin #	Description	In/Out/Bi	Connector
14	Output Common for Digital Outputs 0-3	Output	
1	Opto-Isolated Digital Output 0	Output	
15	Opto-Isolated Digital Output 1	Output	
2	Opto-Isolated Digital Output 2	Output	
16	Opto-Isolated Digital Output 3	Output	
3	Output Common for Digital Outputs 4-7	Output	
17	Opto-Isolated Digital Output 4	Output	
4	Opto-Isolated Digital Output 5	Output	
18	Opto-Isolated Digital Output 6	Output	
5	Opto-Isolated Digital Output 7	Output	(P = = 0
19	Input Common for Digital Inputs 0-3	Output	
6	Opto-Isolated Digital Input 0 / Home Limit Axis 1	Input	
20	Opto-Isolated Digital Input 1 / Home Limit Axis 2	Input	
7	Opto-Isolated Digital Input 2 / Home Limit Axis 3	Input	
21	Opto-Isolated Digital Input 3 / Home Limit Axis 4	Input	
8	Input Common for Digital Inputs 4-7	Output	
22	Opto-Isolated Digital Input 4	Input	
9	Opto-Isolated Digital Input 5	Input	
23	Opto-Isolated Digital Input 6	Input	
10	Opto-Isolated Digital Input 7	Input	
11	High-Speed Differential Input 8-	Input	
24	High-Speed Differential Input 8+	Input	
26	Reserved	N/A	
12	Common	Output	
13	Common	Output	
25	+5 V (500 mA max)	Output	

Table 2-16: Digital I/O Mating Connector Ratings [-EB1]

Table 2 To: Bigital #0 mating Connector Hatings [EB1]			
Specification	26-Pin Solder Cup	Backshell	
Aerotech Part Number	ECK02514	ECK02517	
3M Part Number (1)	10126-3000PE	10326-52F0-008	
Maximum Wire Size 24 AWG (0.2 mm ²) N/A			
(1) Refer to the manufacturer website for additional information.			

2.3.1. Digital Outputs

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in a group in the same configuration. Refer to Figure 2-15 and Figure 2-16.

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 2-15. To see an example of a current sinking output that has diode suppression, refer to Figure 2-16.

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

Table 2-17: Digital Output Specifications

Digital Output Specifications	Value
Maximum Voltage	24 V (26 V Maximum)
Maximum Sink/Source Current	250 mA/output
Output Saturation Voltage	0.9 V at maximum current
Output Resistance	3.7 Ω
Rise / Fall Time	250 µs (2K pull up to 24V)
Reset State	Output Off (High Impedance State)

Table 2-18: Digital Output Pins on Digital I/O Connector

Pin#	Description	In/Out/Bi
14	Output Common for Digital Outputs 0-3	Output
1	Opto-Isolated Digital Output 0	Output
15	Opto-Isolated Digital Output 1	Output
2	Opto-Isolated Digital Output 2	Output
16	Opto-Isolated Digital Output 3	Output
3	Output Common for Digital Outputs 4-7	Output
17	Opto-Isolated Digital Output 4	Output
4	Opto-Isolated Digital Output 5	Output
18	Opto-Isolated Digital Output 6	Output
5	Opto-Isolated Digital Output 7	Output

Figure 2-14: Digital Outputs Schematic

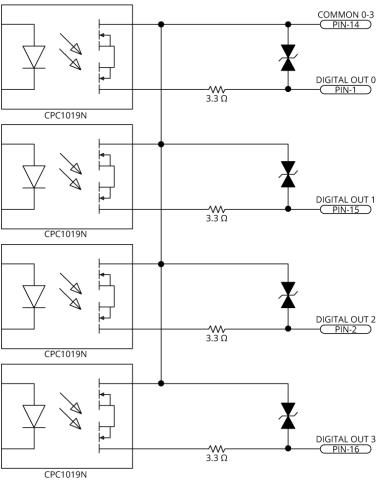
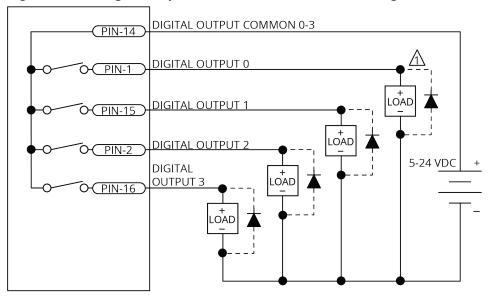
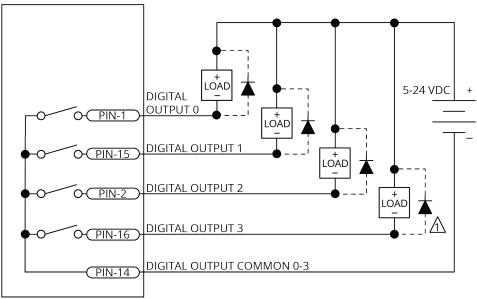




Figure 2-15: Digital Outputs Connected in Current Sourcing Mode

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

Figure 2-16: Digital Outputs Connected in Current Sinking Mode

 \bigwedge DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

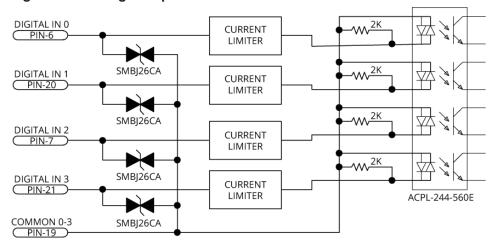
2.3.2. Digital Inputs

Input bits are arranged in groups of 4 and each group shares a common pin. This lets a group be connected to current sourcing or current sinking devices, based on the connection of the common pin in that group.

To be able to connect an input group to current sourcing devices, connect the input group's common pin to the power supply return (-). Refer to Figure 2-18.

To be able to connect an input group to current sinking devices, connect the input group's common pin to the power supply source (+). Refer to Figure 2-19.

The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.


Table 2-19: Digital Input Specifications

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V to +24 V	6 mA	10 µs	43 µs

Table 2-20: Digital Input Pins on the Digital I/O Connector

Pin#	Description	In/Out/Bi
19	Input Common for Digital Inputs 0-3	Output
6	Opto-Isolated Digital Input 0 / Home Limit Axis 1	Input
20	Opto-Isolated Digital Input 1 / Home Limit Axis 2	Input
7	Opto-Isolated Digital Input 2 / Home Limit Axis 3	Input
21	Opto-Isolated Digital Input 3 / Home Limit Axis 4	Input
8	Input Common for Digital Inputs 4-7	Output
22	Opto-Isolated Digital Input 4	Input
9	Opto-Isolated Digital Input 5	Input
23	Opto-Isolated Digital Input 6	Input
10	Opto-Isolated Digital Input 7	Input

Figure 2-17: Digital Inputs Schematic

Each group of four inputs must be connected in an all sourcing or all sinking configuration.

Figure 2-18: Digital Inputs Connected to Current Sourcing (PNP) Devices

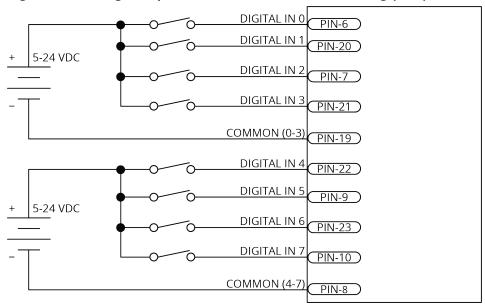
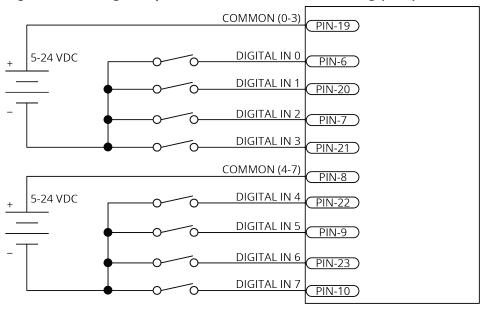
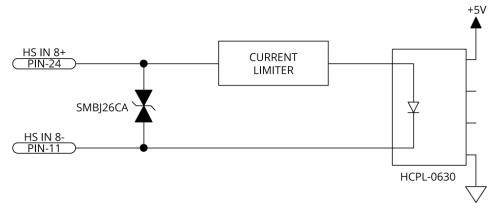



Figure 2-19: Digital Inputs Connected to Current Sinking (NPN) Devices

2.3.3. High-Speed User Input

High-speed input 8 can be used as a general purpose input or as the trigger signal for high speed data collection. Refer to the DriveDataCaptureConfigureTrigger() function topic in the Help file for more information.


Table 2-21: High-Speed Input Specifications

Specification	Value	
Input Voltage	5V - 24 V input voltages	
Input Current	10 mA	
Input Device	HCPL-0630	
Delay	50 nsec	

Table 2-22: High-Speed Input Pins on the Digital I/O Connector

Pin #	Description	In/Out/Bi
11	High-Speed Differential Input 8-	Input
24	High-Speed Differential Input 8+	Input

Figure 2-20: High-Speed Input

2.4. HyperWire Interface

The HyperWire bus is the high-speed communications connection from the controller. It operates at 2 gigabits per second. The controller sends all command and configuration information through the HyperWire bus. This device consumes two or four of the available axes of control on the HyperWire communication network. Refer to your Automation1-iSMC license for the number of available HyperWire axes.

HyperWire cables can be safely connected to or disconnected from a HyperWire port while the PC and/or drive is powered on. However, any changes to the HyperWire network topology will disrupt communication and you must reset the controller to re-establish communication.

WARNING: Do not connect or disconnect HyperWire cables while you are loading firmware or damage to the drives may occur.

Table 2-23: HyperWire Card Part Number

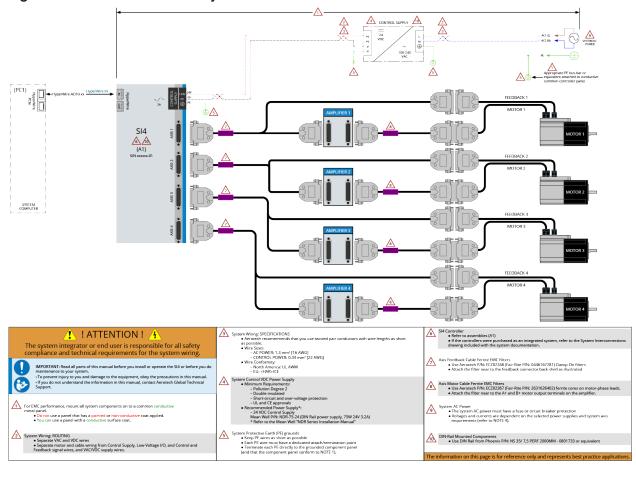

Part Number	Description
HYPERWIRE-PCIE	HyperWire adapter, PCIe x4 interface

Table 2-24: HyperWire Cable Part Numbers

Part Number	Description
HYPERWIRE-AO10-5	HyperWire cable, active optical, 0.5 m
HYPERWIRE-AO10-10	HyperWire cable, active optical, 1.0 m
HYPERWIRE-AO10-30	HyperWire cable, active optical, 3.0 m
HYPERWIRE-AO10-50	HyperWire cable, active optical, 5.0 m
HYPERWIRE-AO10-200	HyperWire cable, active optical, 20.0 m

2.5. System Interconnection

Figure 2-21: Recommended System Connections

2.6. PC Configuration and Operation Information

For more information about hardware requirements, PC configuration, programming, system operation, and utilities, refer to the Help file.

Chapter 3: Maintenance

In general, you should not have a reason to remove the cover or access the internal components. The SI4 does not have any user-configurable switches or jumpers. Internal fuses are not user-replaceable.

IMPORTANT: For your own safety and for the safety of the equipment:

- Do not remove the cover of the SI4
- Do not attempt to access the internal components.

A fuse that needs to be replaced indicates that there is a more serious problem with the system or setup. Contact Global Technical Support for assistance.

Table 2-25: LED Description

LED	Color	Description	
PWR	GREEN	The light will illuminate and remain illuminated while power is applied.	
ENB/FLT	GREEN	Any of the axes are Enabled.	
	RED	Any of the axes are in a Fault Condition.	
	GREEN/RED (alternates)	Any of the axes are Enabled in a Fault Condition.	
		or	
		The light is configured to blink for setup.	

Table 2-26: Troubleshooting

Symptom	Possible Cause and Solution
	Make sure the power LED is illuminated (this indicates that power is present).
	Make sure that all communication cables (HyperWire, for example) are fully inserted in their ports.

3.1. Preventative Maintenance

Do an inspection of the SI4 and the external wiring one time each month. It might be necessary to do more frequent inspections based on:

- The operating conditions of the system.
- How you use the system.

Table 2-27: Preventative Maintenance

Check	Action to be Taken
Examine the chassis for hardware and parts that are damaged or loose. It is not necessary to do an internal inspection unless you think internal damage occurred.	Repair all damaged parts.
Do an inspection of the cooling vents.	Remove all material that collected in the vents.
Examine the work area to make sure there are no fluids and no electrically conductive materials.	Do not let fluids and electrically conductive material go into the chassis.
Examine all cables and connections to make sure	Make sure that all connections are correctly attached and not loose.
they are correct.	Replace cables that are worn.
	Replace all broken connectors.

Cleaning

DANGER: Before you clean the SI4, disconnect the electrical power from the drive.

Use a clean, dry, soft cloth to clean the SI4. If necessary, use a cloth that is moist with water or isopropyl alcohol. If you use a moist cloth, make sure that moisture does not go into the controller. Also make sure that it does not go onto the outer connectors and components. Internal contamination from the cleaning solution can cause corrosion and electrical short circuits.

Do not clean the labels with a cleaning solution because it might remove the label information.

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

https://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO

Aerotech, Inc. Global Headquarters

TAIWAN

Aerotech Taiwan Full-Service Subsidiary

CHINA

Aerotech China Full-Service Subsidiary

UNITED KINGDOM

Aerotech United Kingdom Full-Service Subsidiary

GERMANY

Aerotech Germany Full-Service Subsidiary

Appendix B: Revision History

Revision	Description
1.10	Feature Summary updated (Section 1.1.)
1.09	New Section: Korean Certification
1.08	General Update
1.07	New Section: UKCA Declaration of Conformity
1.06	EU Declaration of Conformity updated
1.05	
1.04	
1.03	Revision changes have been archived. If you need a copy of this revision, contact
1.02	AerotechGlobal Technical Support.
1.01	
1.00	

This page intentionally left blank.

SI4 Hardware Manual Index

Index		Conducted and Radiated Emissions	6-7
		connections, examining	52
		Control Supply Connections	27
2		Control Supply Connector	27
2014/30/EU	6	Mating Connector Part Numbers	27
		Wiring Specifications	27
A		Control Supply specifications	18
Absolute Encoder		cooling vents, inspecting	52
BISS	38	Customer order number	11
EnDat	38		
SSI	38	D	
Absolute Encoder (Axis Connector)	38	Declaration of Conformity	6-7
Absolute Encoder Schematic (Axis Connector)	38	Digital I/O Connector	0 1
Absolute Encoder Specifications (Feedback Connector)	38	Mating Connector Part Numbers	41
Altitude	26	Digital I/O Connector Pinout	41
Amplifier Enable Connector Pin on the Axis Connector	35	Digital Input Pins on the Digital I/O Connector	45
Amplifier Enable Output	35	Digital Input Specifications	45
Amplifier Enable Output Schematic	35	Digital Inputs	45
Amplifier Enable Output Specifications	35	Digital Inputs Connected to a Current Sinking Device	46
Amplifier Fault Input Specifications	34	Digital Inputs Connected to a Current Sourcing Device	46
Axis Connector		Digital Inputs Schematic	45
Absolute Encoder	38	Digital Output Connector Pinout	42
Encoder Inputs	36	Digital Output Specifications	42
End of Travel Limit Input	32	Digital Outputs	42
Mating Connector Part Numbers	29	Digital Outputs Connected in Current Sinking Mode	44
Pinout	29	Digital Outputs Connected in Current Sourcing Mode	44
Primary Encoder	36	Digital Outputs Schematic	43
RS-422 Line Driver Encoder	37	Dimensions	20
Square Wave Encoder	37	Dimensions (2-Axis)	20,22
Travel Limit Input	32	Dimensions (4-Axis)	21,23
Axis Enable Output	35	DIN Rail	
		Mounting Procedure	24
В		P/N	
BiSS absolute encoder	38	EAM00914	24
DISS absolute encoder	30	DIN Rail Clip Kit	
С		P/N	
C		HyperWire-DIN	24
Cables		Direction Output Signals	30
HyperWire	48	Direction Signal Output Polarity	30
cables, examining	52	Drawing number	11
Check for fluids or electrically conductive material exposure	52	Drive and Software Compatibility	26
Cleaning	52	Drive IP Rating	
Clock and Direction Output Schematic	31	IP20	19
Clock and Direction Timing	30		
Clock Output Signals	30		

E		Outputs Connected in Current Sinking Mode	44
EAM00914 (DIN Rail Part Number)	24	Outputs Connected in Current Sourcing Mode	44
Electrical Specifications		Square Wave Encoder Schematic (Axis Connector)	37
Electromagnetic Compatibility (EMC)	18 6	fluids, dangerous	52
EMC/CE Compliance	28	Functional Diagram	18
Enclosure	20		
IP54 Compliant	19	Н	
encoder	10	Handling	11
absolute	38	High-Speed Input	47
Encoder Input Pins on the Axis Connector	36	High-Speed Input Pins on the Digital I/O Connector	47
Encoder Inputs (Axis Connector)	36	High-Speed Input Specifications	47
Encoder Phasing	39	High-Speed User Input	47
Encoder Phasing Reference Diagram	39	Humidity	26
End of Travel Limit Input (Axis Connector)	32	HyperWire	48
End of Travel Limit Input Connections	32	Cable Part Numbers	48
End of Travel Limit Input Diagnostic Display	33	Card Part Number	48
End of Travel Limit Input Pins on the Axis Connector	32	HyperWire-DIN (DIN Rail Clip Kit Part Number)	24
End of Travel Limit Input Schematic	32	Thypotyvillo Birt (Birt Naii Gilp Nit Tait Naii Bot)	- 1
End of Travel Limit Phasing	33	1	
EnDat absolute encoder	38	•	
Environmental Specifications	26	Input Power Connections	27
EU 2015/863	6	inspecting cooling vents	52
examining parts	O	Inspection	52
cables	52	Installation and Configuration	27
connections	52	Installation Overview	12
examining, dangerous fluids	52	Introduction	15
examining, dangerous material	52	IP20 Drive IP Rating	19
examining, dangerous material	02	IP54 Compliant Enclosure	19
F		K	
Feature Summary	17		
Figure		Korean Certification	8
Absolute Encoder Schematic (Axis Connector)	38		
Control Supply Connections	27	M	
Digital Inputs Connected to a Current Sinking Device	46	Maintenance	51
Digital Inputs Connected to a Current Sourcing Device	_	material, electrically conductive	52
Digital Inputs Schematic	45	Mating Connector P/N	
Digital Outputs Schematic	43	Axis Connector	29
Dimensions (2-Axis)	20,22	Control Supply Connector	27
Dimensions (4-Axis)	21,23	Digital I/O Connector	41
End of Travel Limit Input Connections	32	Mechanical Specifications	19
End of Travel Limit Input Connections End of Travel Limit Input Diagnostic Display	33	Minimizing Conducted, Radiated, and System Noise for	
End of Travel Limit Input Schematic	32	EMC/CE Compliance	28
High-Speed Input	47	Modes of Operation	18
. ng/i opood input	71	Mounting and Cooling	19

SI4 Hardware Manual Index

Mounting Hardware	19	Specifications	
Mounting Orientation	19	Absolute Encoder (Feedback Connector)	38
		Amplifier Enable Output	35
0		Amplifier Fault Input	34
OFM Mounting Proceedure	25	Control Supply Connector Wiring	27
OEM Mounting Procedure	25 26	Digital Inputs	45
Operation	_	Digital Outputs	42
Overview	15	High-Speed Input	47
D.		RS-422 Encoder (Axis Connector)	37
Р		Square Wave Encoder (Axis Connector)	37
packing list	11	Stepper Clock Signal Output	30
PC Configuration and Operation Information	50	Stepper Direction Signal Output	30
Phasing	33	Unit Weight	19
Stepper Motor	40	Square Wave Encoder	37
Pinout		Square Wave Encoder Schematic (Axis Connector)	37
Amplifier Enable Connector (Axis Connector)	35	Square Wave Encoder Specifications (Axis Connector)	37
Axis Connector	29	SSI absolute encoder	38
Digital I/O Connector	41	Stepper Clock and Stepper Direction Output Schematic	31
Digital Input Pins (Digital I/O Connector)	45	Stepper Clock and Stepper Direction Timing	30
Digital Output Connector	42	Stepper Clock Output Signals	30
Encoder Input (Axis Connector)	36	Stepper Clock Pin on the Axis Connector	30
End of Travel Limit Input Pins (Axis Connector)	32	Stepper Clock Signal Output Specifications	30
High-Speed Input Pins (Digital I/O Connector)	47	Stepper Direction Output Signals	30
Primary Encoder Inputs (Axis Connector)	36	Stepper Direction Pin on the Axis Connector	30
Stepper Clock Pin (Axis Connector)	30	Stepper Direction Signal Output Specifications	30
Stepper Direction Pin (Axis Connector)	30	Stepper Motor Phasing	40
Polarity of the Direction Signal Output	30	Storage	11
Pollution	26	System part number	11
Position Feedback in the Diagnostic Display	39	-,	
Preventative Maintenance	52	Т	
Primary Encoder (Axis Connector)	36	-	_
Primary Encoder Input Pins on the Axis Connector	36	Table of Contents	3
Protective Features	18	Temperature	26
		Travel Limit Input (Axis Connector)	32
R			
Revision History	55	U	
RS-422 Encoder Specifications (Axis Connector)	37	Unit Weight	19
RS-422 Line Driver Encoder	37	Use	26
	-	User Power Supply specifications	18
s			
Safety Procedures and Warnings	9	W	
serial data stream	38	Warranty and Field Service	53
serial number	11		

This page intentionally left blank.